BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23803343)

  • 1. Validation of the Actical and Actiheart monitor in ambulatory children with spina bifida.
    de Groot JF; de Jong AS; Visser T; Takken T
    J Pediatr Rehabil Med; 2013; 6(2):103-11. PubMed ID: 23803343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Actiheart in adolescents: a doubly labelled water validation.
    Campbell N; Prapavessis H; Gray C; McGowan E; Rush E; Maddison R
    Pediatr Exerc Sci; 2012 Nov; 24(4):589-602. PubMed ID: 23196766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting ambulatory energy expenditure in lower limb amputees using multi-sensor methods.
    Ladlow P; Nightingale TE; McGuigan MP; Bennett AN; Phillip RD; Bilzon JLJ
    PLoS One; 2019; 14(1):e0209249. PubMed ID: 30703115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of PAEE from combined and separate heart rate and movement models in children.
    Corder K; Brage S; Wareham NJ; Ekelund U
    Med Sci Sports Exerc; 2005 Oct; 37(10):1761-7. PubMed ID: 16260978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.
    Garnotel M; Bastian T; Romero-Ugalde HM; Maire A; Dugas J; Zahariev A; Doron M; Jallon P; Charpentier G; Franc S; Blanc S; Bonnet S; Simon C
    J Appl Physiol (1985); 2018 Mar; 124(3):780-790. PubMed ID: 29191980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of energy cost of locomotion in ambulatory children with spina bifida.
    De Groot JF; Takken T; Schoenmakers MA; Tummers L; Vanhees L; Helders PJ
    Gait Posture; 2010 Feb; 31(2):159-63. PubMed ID: 19875289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical activity-related energy expenditure with the RT3 and TriTrac accelerometers in overweight adults.
    Jacobi D; Perrin AE; Grosman N; Doré MF; Normand S; Oppert JM; Simon C
    Obesity (Silver Spring); 2007 Apr; 15(4):950-6. PubMed ID: 17426330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon.
    Assah FK; Ekelund U; Brage S; Wright A; Mbanya JC; Wareham NJ
    Int J Epidemiol; 2011 Feb; 40(1):112-20. PubMed ID: 20529884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of two methods to assess PAEE during six activities in children.
    Corder K; Brage S; Mattocks C; Ness A; Riddoch C; Wareham NJ; Ekelund U
    Med Sci Sports Exerc; 2007 Dec; 39(12):2180-8. PubMed ID: 18046189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of energy expenditure estimates from the Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging.
    Spierer DK; Hagins M; Rundle A; Pappas E
    Eur J Appl Physiol; 2011 Apr; 111(4):659-67. PubMed ID: 20953878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of a combined heart rate and motion sensor for assessing energy expenditure in free-living adults during a double-blind crossover caffeine trial using doubly labeled water as the reference method.
    Silva AM; Santos DA; Matias CN; Júdice PB; Magalhães JP; Ekelund U; Sardinha LB
    Eur J Clin Nutr; 2015 Jan; 69(1):20-7. PubMed ID: 24690589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the Actiheart activity monitor for measurement of activity energy expenditure in children and adolescents with chronic disease.
    Takken T; Stephens S; Balemans A; Tremblay MS; Esliger DW; Schneiderman J; Biggar D; Longmuir P; Wright V; McCrindle B; Hendricks M; Abad A; van der Net J; Beyene J; Feldman BM
    Eur J Clin Nutr; 2010 Dec; 64(12):1494-500. PubMed ID: 20877392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW.
    Sardinha LB; Júdice PB
    Eur J Clin Nutr; 2017 Mar; 71(3):331-339. PubMed ID: 28145419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L; Chen KY; Acra SA; Buchowski MS
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treadmill testing of children who have spina bifida and are ambulatory: does peak oxygen uptake reflect maximum oxygen uptake?
    de Groot JF; Takken T; de Graaff S; Gooskens RH; Helders PJ; Vanhees L
    Phys Ther; 2009 Jul; 89(7):679-87. PubMed ID: 19482903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.