These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23803859)

  • 1. Dissecting genealogy and cell cycle as sources of cell-to-cell variability in MAPK signaling using high-throughput lineage tracking.
    Ricicova M; Hamidi M; Quiring A; Niemistö A; Emberly E; Hansen CL
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11403-8. PubMed ID: 23803859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform.
    Taylor RJ; Falconnet D; Niemistö A; Ramsey SA; Prinz S; Shmulevich I; Galitski T; Hansen CL
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3758-63. PubMed ID: 19223588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput tracking of single yeast cells in a microfluidic imaging matrix.
    Falconnet D; Niemistö A; Taylor RJ; Ricicova M; Galitski T; Shmulevich I; Hansen CL
    Lab Chip; 2011 Feb; 11(3):466-73. PubMed ID: 21088765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway.
    Conlon P; Gelin-Licht R; Ganesan A; Zhang J; Levchenko A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5896-E5905. PubMed ID: 27651485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulated cell-to-cell variation in a cell-fate decision system.
    Colman-Lerner A; Gordon A; Serra E; Chin T; Resnekov O; Endy D; Pesce CG; Brent R
    Nature; 2005 Sep; 437(7059):699-706. PubMed ID: 16170311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative and dynamic assay of single cell chemotaxis.
    Lee SS; Horvath P; Pelet S; Hegemann B; Lee LP; Peter M
    Integr Biol (Camb); 2012 Apr; 4(4):381-90. PubMed ID: 22230969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAPK specificity in the yeast pheromone response independent of transcriptional activation.
    Breitkreutz A; Boucher L; Tyers M
    Curr Biol; 2001 Aug; 11(16):1266-71. PubMed ID: 11525741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lineage correlations of single cell division time as a probe of cell-cycle dynamics.
    Sandler O; Mizrahi SP; Weiss N; Agam O; Simon I; Balaban NQ
    Nature; 2015 Mar; 519(7544):468-71. PubMed ID: 25762143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-talk and decision making in MAP kinase pathways.
    McClean MN; Mody A; Broach JR; Ramanathan S
    Nat Genet; 2007 Mar; 39(3):409-14. PubMed ID: 17259986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors.
    Durandau E; Aymoz D; Pelet S
    BMC Biol; 2015 Aug; 13():55. PubMed ID: 26231587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein expression patterns of the yeast mating response.
    Yuan H; Zhang R; Shao B; Wang X; Ouyang Q; Hao N; Luo C
    Integr Biol (Camb); 2016 Jun; 8(6):712-9. PubMed ID: 27177258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase.
    Feng Y; Davis NG
    Mol Cell Biol; 2000 Jan; 20(2):563-74. PubMed ID: 10611235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two programmed replicative lifespans of Saccharomyces cerevisiae formed by the endogenous molecular-cellular network.
    Hu J; Zhu X; Wang X; Yuan R; Zheng W; Xu M; Ao P
    J Theor Biol; 2014 Dec; 362():69-74. PubMed ID: 24447585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unidirectional P-body transport during the yeast cell cycle.
    Garmendia-Torres C; Skupin A; Michael SA; Ruusuvuori P; Kuwada NJ; Falconnet D; Cary GA; Hansen C; Wiggins PA; Dudley AM
    PLoS One; 2014; 9(6):e99428. PubMed ID: 24918601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Cdc42-Cla4 interaction in the pheromone response of Saccharomyces cerevisiae.
    Heinrich M; Köhler T; Mösch HU
    Eukaryot Cell; 2007 Feb; 6(2):317-27. PubMed ID: 17189484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell analysis reveals that insulation maintains signaling specificity between two yeast MAPK pathways with common components.
    Patterson JC; Klimenko ES; Thorner J
    Sci Signal; 2010 Oct; 3(144):ra75. PubMed ID: 20959523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence.
    Garrenton LS; Braunwarth A; Irniger S; Hurt E; Künzler M; Thorner J
    Mol Cell Biol; 2009 Jan; 29(2):582-601. PubMed ID: 19001089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.