These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23803861)

  • 1. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials.
    Zhong S; He S
    Sci Rep; 2013; 3():2083. PubMed ID: 23803861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial.
    Ning J; Chen K; Zhao W; Zhao J; Jiang T; Feng Y
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial.
    Shao C; Long H; Cheng Y; Liu X
    Sci Rep; 2019 Sep; 9(1):13482. PubMed ID: 31530878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies.
    Duan G; Schalch J; Zhao X; Zhang J; Averitt RD; Zhang X
    Opt Express; 2018 Feb; 26(3):2242-2251. PubMed ID: 29401764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates.
    Pang Y; Cheng H; Zhou Y; Li Z; Wang J
    Opt Express; 2012 May; 20(11):12515-20. PubMed ID: 22714239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conceptual-based design of an ultrabroadband microwave metamaterial absorber.
    Qu S; Hou Y; Sheng P
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34480006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain.
    Zhang Y; Zhao J; Cao J; Mao B
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29895793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.
    Deng R; Li M; Muneer B; Zhu Q; Shi Z; Song L; Zhang T
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflection phase modification by metamaterial interface: an understanding of design criteria for ultrathin multispectral absorber.
    Li M; Deng R; Muneer B; Zhang T
    Opt Express; 2019 Sep; 27(18):26131-26142. PubMed ID: 31510473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable-Manufactured Metamaterials for Simultaneous Visible Transmission, Infrared Reflection, and Microwave Absorption.
    Li D; Chen Q; Huang J; Xu H; Lu Y; Song W
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35834403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process.
    Huang TY; Tseng CW; Yeh TT; Yeh TT; Luo CW; Akalin T; Yen TJ
    Sci Rep; 2015 Dec; 5():18605. PubMed ID: 26690846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching the lowest operating frequency thickness limits with complex surface impedance of ultrathin absorbers.
    Li R; Dong J; Si K; He F; Zha D; Miao L; Bie S; Jiang J
    Opt Express; 2021 Feb; 29(3):4442-4452. PubMed ID: 33771022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-Modified Ordered Mesoporous Carbon for Optimized Impedance-Matching Characteristic Enabling Lightweight and Effective Microwave Absorbers.
    Zhou P; Zhang J; Zhu H; Wang L; Wang X; Song Z; Zhang Q; Yu M; Liu Z; Xu T; Feng W; Feng X
    ACS Appl Mater Interfaces; 2020 May; 12(20):23252-23260. PubMed ID: 32343542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of nanosize polyaniline and its utilization for microwave absorber.
    Abbas SM; Dixit AK; Chatterjee R; Goel TC
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2129-33. PubMed ID: 17655005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.
    Kaipurath RM; Pietrzyk M; Caspani L; Roger T; Clerici M; Rizza C; Ciattoni A; Di Falco A; Faccio D
    Sci Rep; 2016 Jun; 6():27700. PubMed ID: 27292270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-insensitive Archimedes'-spiral-shaped ultrathin metamaterial absorbers for microwave sensing application.
    Lateef OS; Al-Badri M; Al-Badri KSL; Mohammed SA
    Sci Rep; 2023 Nov; 13(1):19445. PubMed ID: 37945627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain-Assisted Giant Third-Order Nonlinearity of Epsilon-Near-Zero Multilayered Metamaterials.
    Shi W; Liu H; Wang Z
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.