These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23804094)

  • 1. Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex.
    Gaucher Q; Huetz C; Gourévitch B; Edeline JM
    J Neurosci; 2013 Jun; 33(26):10713-28. PubMed ID: 23804094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area.
    Thiele A; Herrero JL; Distler C; Hoffmann KP
    J Neurosci; 2012 Nov; 32(47):16602-15. PubMed ID: 23175816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-modal plasticity results in increased inhibition in primary auditory cortical areas.
    Mao YT; Pallas SL
    Neural Plast; 2013; 2013():530651. PubMed ID: 24288625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different timescales for the neural coding of consonant and vowel sounds.
    Perez CA; Engineer CT; Jakkamsetti V; Carraway RS; Perry MS; Kilgard MP
    Cereb Cortex; 2013 Mar; 23(3):670-83. PubMed ID: 22426334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A population of neurons selective for human voice in the monkey brain.
    Giamundo M; Trapeau R; Thoret E; Renaud L; Nougaret S; Brochier TG; Belin P
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2405588121. PubMed ID: 38861607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Neuronal Discrimination in Primary Auditory Cortex Despite Degradations of Spectro-temporal Acoustic Details: Comparison Between Guinea Pigs with Normal Hearing and Mild Age-Related Hearing Loss.
    Aushana Y; Souffi S; Edeline JM; Lorenzi C; Huetz C
    J Assoc Res Otolaryngol; 2018 Apr; 19(2):163-180. PubMed ID: 29302822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parvalbumin neurons enhance temporal coding and reduce cortical noise in complex auditory scenes.
    Nocon JC; Gritton HJ; James NM; Mount RA; Qu Z; Han X; Sen K
    Commun Biol; 2023 Jul; 6(1):751. PubMed ID: 37468561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite receptive fields in the mouse auditory cortex.
    Lu S; Ang GWY; Steadman M; Kozlov AS
    J Physiol; 2023 Sep; 601(18):4091-4104. PubMed ID: 37578817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus-specific effects of noradrenaline in auditory cortex: implications for the discrimination of communication sounds.
    Gaucher Q; Edeline JM
    J Physiol; 2015 Feb; 593(4):1003-20. PubMed ID: 25398527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Extensive Training Transform a Mouse into a Guinea Pig? An Evaluation Based on the Discriminative Abilities of Inferior Colliculus Neurons.
    Martin A; Souffi S; Huetz C; Edeline JM
    Biology (Basel); 2024 Feb; 13(2):. PubMed ID: 38392310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends.
    Chiarion G; Sparacino L; Antonacci Y; Faes L; Mesin L
    Bioengineering (Basel); 2023 Mar; 10(3):. PubMed ID: 36978763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice.
    Xue B; Meng X; Kao JPY; Kanold PO
    Hear Res; 2023 Mar; 429():108685. PubMed ID: 36701895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Updates to the guinea pig animal model for in-vivo auditory neuroscience in the low-frequency hearing range.
    Montes-Lourido P; Kar M; Pernia M; Parida S; Sadagopan S
    Hear Res; 2022 Oct; 424():108603. PubMed ID: 36099806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons.
    Souffi S; Lameth J; Gaucher Q; Arnaud-Cormos D; Lévêque P; Edeline JM; Mallat M
    Sci Rep; 2022 Mar; 12(1):4063. PubMed ID: 35260711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Threshold and Reduced Firing Rate of Auditory Cortex Neurons after Cochlear Implant Insertion.
    Partouche E; Adenis V; Gnansia D; Stahl P; Edeline JM
    Brain Sci; 2022 Jan; 12(2):. PubMed ID: 35203968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct timescales for the neuronal encoding of vocal signals in a high-order auditory area.
    Cazala A; Del Negro C; Giret N
    Sci Rep; 2021 Oct; 11(1):19672. PubMed ID: 34608248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex.
    Montes-Lourido P; Kar M; David SV; Sadagopan S
    PLoS Biol; 2021 Jun; 19(6):e3001299. PubMed ID: 34133413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness to Noise in the Auditory System: A Distributed and Predictable Property.
    Souffi S; Lorenzi C; Huetz C; Edeline JM
    eNeuro; 2021; 8(2):. PubMed ID: 33632813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations.
    Souffi S; Lorenzi C; Varnet L; Huetz C; Edeline JM
    J Neurosci; 2020 Jul; 40(27):5228-5246. PubMed ID: 32444386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal Encoding in a High-Level Auditory Area: From Sequential Order of Elements to Grammatical Structure.
    Cazala A; Giret N; Edeline JM; Del Negro C
    J Neurosci; 2019 Jul; 39(31):6150-6161. PubMed ID: 31147525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.