BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 23804289)

  • 1. Probing the key interactions between human Atg5 and Atg16 proteins: a prospective application of molecular modeling.
    Zhao Z; Zhang Z; Li Y; Zhou M; Li X; Yu B; Wang R
    ChemMedChem; 2013 Aug; 8(8):1270-5. PubMed ID: 23804289
    [No Abstract]   [Full Text] [Related]  

  • 2. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners.
    Kim JH; Hong SB; Lee JK; Han S; Roh KH; Lee KE; Kim YK; Choi EJ; Song HK
    Autophagy; 2015; 11(1):75-87. PubMed ID: 25484072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Atg5.Atg16, a complex essential for autophagy.
    Matsushita M; Suzuki NN; Obara K; Fujioka Y; Ohsumi Y; Inagaki F
    J Biol Chem; 2007 Mar; 282(9):6763-72. PubMed ID: 17192262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the role of Atg5 in nucleotide dependent interaction of Rab33B with the dimeric complex, Atg5-Atg16L1.
    Chandra M; Saran R; Datta S
    Biochem Biophys Res Commun; 2016 Apr; 473(1):8-16. PubMed ID: 26975471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization of the coiled-coil domain of Atg16 essential for autophagy.
    Fujioka Y; Noda NN; Matsushita M; Ohsumi Y; Inagaki F
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Nov; 64(Pt 11):1046-8. PubMed ID: 18997338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the ATG5-ATG16L1 Protein-Protein Interaction with a Hydrocarbon-Stapled Peptide Derived from ATG16L1 for Autophagy Inhibition.
    Cui J; Ogasawara Y; Kurata I; Matoba K; Fujioka Y; Noda NN; Shibasaki M; Watanabe T
    J Am Chem Soc; 2022 Sep; 144(38):17671-17679. PubMed ID: 36107218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, purification and crystallization of the Atg5-Atg16 complex essential for autophagy.
    Matsushita M; Suzuki NN; Fujioka Y; Ohsumi Y; Inagaki F
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):1021-3. PubMed ID: 17012802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rab33B and its autophagic Atg5/12/16L1 effector assist in hepatitis B virus naked capsid formation and release.
    Döring T; Prange R
    Cell Microbiol; 2015 May; 17(5):747-64. PubMed ID: 25439980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly.
    Kaufmann A; Beier V; Franquelim HG; Wollert T
    Cell; 2014 Jan; 156(3):469-81. PubMed ID: 24485455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1.
    Rozenknop A; Rogov VV; Rogova NY; Löhr F; Güntert P; Dikic I; Dötsch V
    J Mol Biol; 2011 Jul; 410(3):477-87. PubMed ID: 21620860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key interaction modes of dynamic +TIP networks.
    Honnappa S; Okhrimenko O; Jaussi R; Jawhari H; Jelesarov I; Winkler FK; Steinmetz MO
    Mol Cell; 2006 Sep; 23(5):663-71. PubMed ID: 16949363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for APPTPPPLPP peptide recognition by the FBP11WW1 domain.
    Pires JR; Parthier C; Aido-Machado Rd; Wiedemann U; Otte L; Böhm G; Rudolph R; Oschkinat H
    J Mol Biol; 2005 Apr; 348(2):399-408. PubMed ID: 15811376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atg8-family interacting motif crucial for selective autophagy.
    Noda NN; Ohsumi Y; Inagaki F
    FEBS Lett; 2010 Apr; 584(7):1379-85. PubMed ID: 20083108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative binding modes of proline-rich peptides binding to the GYF domain.
    Gu W; Kofler M; Antes I; Freund C; Helms V
    Biochemistry; 2005 May; 44(17):6404-15. PubMed ID: 15850374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii.
    Ohshima J; Lee Y; Sasai M; Saitoh T; Su Ma J; Kamiyama N; Matsuura Y; Pann-Ghill S; Hayashi M; Ebisu S; Takeda K; Akira S; Yamamoto M
    J Immunol; 2014 Apr; 192(7):3328-35. PubMed ID: 24563254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of human survivin and its binding interface with Smac/Diablo.
    Sun C; Nettesheim D; Liu Z; Olejniczak ET
    Biochemistry; 2005 Jan; 44(1):11-7. PubMed ID: 15628841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between family 3 carbohydrate binding modules (CBMs) and cellulosomal linker peptides.
    Yaniv O; Frolow F; Levy-Assraf M; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():247-59. PubMed ID: 22608730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule stabilization: formins assert their independence.
    DeWard AD; Alberts AS
    Curr Biol; 2008 Jul; 18(14):R605-8. PubMed ID: 18644336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of autophagosomal marker protein LC3-II under detergent-free conditions.
    Huang YC; Li YM; Chen Y; Pan M; Li YT; Yu L; Guo QX; Liu L
    Angew Chem Int Ed Engl; 2013 Apr; 52(18):4858-62. PubMed ID: 23554020
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly.
    Tan LL; Hoon SS; Wong FT
    PLoS One; 2016; 11(10):e0165074. PubMed ID: 27783674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.