BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 23804322)

  • 1. A brief overview of some physical studies on the relaxation dynamics and Förster resonance energy transfer of semiconductor quantum dots.
    Sadhu S; Patra A
    Chemphyschem; 2013 Aug; 14(12):2641-53. PubMed ID: 23804322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.
    Stewart MH; Huston AL; Scott AM; Efros AL; Melinger JS; Gemmill KB; Trammell SA; Blanco-Canosa JB; Dawson PE; Medintz IL
    ACS Nano; 2012 Jun; 6(6):5330-47. PubMed ID: 22671940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady State and Time Resolved Spectroscopic Study of CdSe and CdSe/ZnS QDs:FRET Approach.
    Kotresh MG; Adarsh KS; Shivkumar MA; Inamdar SR
    J Fluoresc; 2016 Jul; 26(4):1249-59. PubMed ID: 27155863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites.
    Bain D; Paramanik B; Sadhu S; Patra A
    Nanoscale; 2015 Dec; 7(48):20697-708. PubMed ID: 26603192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates.
    Stewart MH; Huston AL; Scott AM; Oh E; Algar WR; Deschamps JR; Susumu K; Jain V; Prasuhn DE; Blanco-Canosa J; Dawson PE; Medintz IL
    ACS Nano; 2013 Oct; 7(10):9489-505. PubMed ID: 24128175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.
    Zheng K; Žídek K; Abdellah M; Zhu N; Chábera P; Lenngren N; Chi Q; Pullerits T
    J Am Chem Soc; 2014 Apr; 136(17):6259-68. PubMed ID: 24684141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot-based resonance energy transfer and its growing application in biology.
    Medintz IL; Mattoussi H
    Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of FRET between Molecular Aggregates and Quantum Dots.
    Maity P; Gayathri T; Singh SP; Ghosh HN
    Chem Asian J; 2019 Feb; 14(4):597-605. PubMed ID: 30600921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.
    Qiao Y; Polzer F; Kirmse H; Steeg E; Kühn S; Friede S; Kirstein S; Rabe JP
    ACS Nano; 2015 Feb; 9(2):1552-60. PubMed ID: 25555126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging.
    Geißler D; Linden S; Liermann K; Wegner KD; Charbonnière LJ; Hildebrandt N
    Inorg Chem; 2014 Feb; 53(4):1824-38. PubMed ID: 24099579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.