These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23804591)

  • 41. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of nanomechanical bone tissue properties on bone tissue strain: implications for osteocyte mechanotransduction.
    Nicolella DP; Feng JQ; Moravits DE; Bonivitch AR; Wang Y; Dusecich V; Yao W; Lane N; Bonewald LF
    J Musculoskelet Neuronal Interact; 2008; 8(4):330-1. PubMed ID: 19147962
    [No Abstract]   [Full Text] [Related]  

  • 44. Three-dimensional trabecular alignment model.
    Bono ES; Smolinski P; Casagranda A; Xu J
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):125-31. PubMed ID: 12745426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanotransduction and strain amplification in osteocyte cell processes.
    Han Y; Cowin SC; Schaffler MB; Weinbaum S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16689-94. PubMed ID: 15539460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads.
    Qu C; Qin QH; Kang Y
    Biomaterials; 2006 Jul; 27(21):4050-7. PubMed ID: 16574223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteocyte primary cilium and its role in bone mechanotransduction.
    Temiyasathit S; Jacobs CR
    Ann N Y Acad Sci; 2010 Mar; 1192():422-8. PubMed ID: 20392268
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity.
    Milovanovic P; Zimmermann EA; Hahn M; Djonic D; Püschel K; Djuric M; Amling M; Busse B
    ACS Nano; 2013 Sep; 7(9):7542-51. PubMed ID: 23909715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy.
    Ciani C; Doty SB; Fritton SP
    Bone; 2009 May; 44(5):1015-7. PubMed ID: 19442607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of interstitial fluid flow in the remodeling response to fatigue loading.
    Tami AE; Nasser P; Verborgt O; Schaffler MB; Knothe Tate ML
    J Bone Miner Res; 2002 Nov; 17(11):2030-7. PubMed ID: 12412811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Osteocytes: central conductors of bone biology in normal and pathological conditions.
    Neve A; Corrado A; Cantatore FP
    Acta Physiol (Oxf); 2012 Mar; 204(3):317-30. PubMed ID: 22099166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study.
    McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ
    FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow.
    Goulet GC; Cooper DM; Coombe D; Zernicke RF
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):379-87. PubMed ID: 18568832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface.
    Hartmann MA; Dunlop JW; Bréchet YJ; Fratzl P; Weinkamer R
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):879-87. PubMed ID: 21616469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling fluorescence recovery after photobleaching in loaded bone: potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system.
    Zhou X; Novotny JE; Wang L
    Ann Biomed Eng; 2008 Dec; 36(12):1961-77. PubMed ID: 18810639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strain driven transport for bone modeling at the periosteal surface.
    Banks-Sills L; Ståhle P; Svensson I; Eliaz N
    Math Biosci; 2011 Mar; 230(1):37-44. PubMed ID: 21199660
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading.
    Benalla M; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2012 Jul; 11(6):767-80. PubMed ID: 21959747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation.
    Pastrama MI; Scheiner S; Pivonka P; Hellmich C
    Bone; 2018 Feb; 107():208-221. PubMed ID: 29170108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.