These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23804955)

  • 1. Comparison between FEBio and Abaqus for biphasic contact problems.
    Meng Q; Jin Z; Fisher J; Wilcox R
    Proc Inst Mech Eng H; 2013 Sep; 227(9):1009-19. PubMed ID: 23804955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method.
    Guo H; Spilker RL
    J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative.
    Paz A; Orozco GA; Tanska P; GarcĂ­a JJ; Korhonen RK; Mononen ME
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(11):1353-1367. PubMed ID: 36062938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of various contact algorithms for poroelastic tissues.
    Galbusera F; Bashkuev M; Wilke HJ; Shirazi-Adl A; Schmidt H
    Comput Methods Biomech Biomed Engin; 2014; 17(12):1323-34. PubMed ID: 23244496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues.
    Zimmerman BK; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34382640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.
    Meng Q; An S; Damion RA; Jin Z; Wilcox R; Fisher J; Jones A
    J Mech Behav Biomed Mater; 2017 Jan; 65():439-453. PubMed ID: 27662625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations.
    Nagel T; Kelly DJ
    J Mech Behav Biomed Mater; 2012 May; 9():122-9. PubMed ID: 22498290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An augmented Lagrangian finite element formulation for 3D contact of biphasic tissues.
    Guo H; Spilker RL
    Comput Methods Biomech Biomed Engin; 2014; 17(11):1206-16. PubMed ID: 23181617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic comparison between FEBio and PolyFEM for biomechanical systems.
    Martin L; Jain P; Ferguson Z; Gholamalizadeh T; Moshfeghifar F; Erleben K; Panozzo D; Abramowitch S; Schneider T
    Comput Methods Programs Biomed; 2024 Feb; 244():107938. PubMed ID: 38056313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic Analysis of Cartilage Stresses in the Patellofemoral Joint.
    Jones B; Hung CT; Ateshian G
    J Knee Surg; 2016 Feb; 29(2):92-8. PubMed ID: 26641078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of nonlinear fibre-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis.
    Seifzadeh A; Oguamanam DC; Trutiak N; Hurtig M; Papini M
    Comput Methods Programs Biomed; 2012 Aug; 107(2):315-26. PubMed ID: 21802762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A viscoelastic constitutive model can accurately represent entire creep indentation tests of human patella cartilage.
    Keenan KE; Pal S; Lindsey DP; Besier TF; Beaupre GS
    J Appl Biomech; 2013 Jun; 29(3):292-302. PubMed ID: 23027200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.
    Chen X; Zhou Y; Wang L; Santare MH; Wan LQ; Lu XL
    Ann Biomed Eng; 2016 Apr; 44(4):1148-58. PubMed ID: 26240062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage.
    Lin W; Meng Q; Li J; Chen Z; Jin Z
    Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding.
    Guo H; Shah M; Spilker RL
    Proc Inst Mech Eng H; 2014 Mar; 228(3):225-36. PubMed ID: 24496915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.