These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. Lu MZ; Snyder R; Grant J; Tegeder M Plant J; 2020 Jan; 101(1):217-236. PubMed ID: 31520495 [TBL] [Abstract][Full Text] [Related]
8. Seasonal changes of sucrose transporter expression and sugar partitioning in common European tree species. Dobbelstein E; Fink D; Öner-Sieben S; Czempik L; Lohaus G Tree Physiol; 2019 Feb; 39(2):284-299. PubMed ID: 30388274 [TBL] [Abstract][Full Text] [Related]
9. Sugar concentrations and expression of SUTs suggest active phloem loading in tall trees of Fagus sylvatica and Quercus robur. Miehe W; Czempik L; Klebl F; Lohaus G Tree Physiol; 2023 May; 43(5):805-816. PubMed ID: 36579830 [TBL] [Abstract][Full Text] [Related]
10. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Bihmidine S; Julius BT; Dweikat I; Braun DM Plant Signal Behav; 2016; 11(1):e1117721. PubMed ID: 26619184 [TBL] [Abstract][Full Text] [Related]
11. Phloem Loading and Unloading of Sucrose: What a Long, Strange Trip from Source to Sink. Braun DM Annu Rev Plant Biol; 2022 May; 73():553-584. PubMed ID: 35171647 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of Wang Y; Chen Y; Wei Q; Wan H; Sun C PeerJ; 2021; 9():e11961. PubMed ID: 34603845 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). Deol KK; Mukherjee S; Gao F; Brûlé-Babel A; Stasolla C; Ayele BT BMC Plant Biol; 2013 Nov; 13():181. PubMed ID: 24237613 [TBL] [Abstract][Full Text] [Related]
14. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement. Li Y; Tu M; Feng Y; Wang W; Messing J Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097 [TBL] [Abstract][Full Text] [Related]
15. [Functional analysis on sucrose transporters in sweet potato]. Liu Y; Wu Z; Wu W; Yang C; Chen C; Zhang K Sheng Wu Gong Cheng Xue Bao; 2023 Jul; 39(7):2772-2793. PubMed ID: 37584131 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional regulation of the raffinose family oligosaccharides pathway in McKinley BA; Thakran M; Zemelis-Durfee S; Huang X; Brandizzi F; Rooney WL; Mansfield SD; Mullet JE Front Plant Sci; 2022; 13():1062264. PubMed ID: 36570942 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. McKinley B; Rooney W; Wilkerson C; Mullet J Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301 [TBL] [Abstract][Full Text] [Related]
18. Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. Yadav UP; Evers JF; Shaikh MA; Ayre BG J Exp Bot; 2022 Jan; 73(3):848-859. PubMed ID: 34687198 [TBL] [Abstract][Full Text] [Related]
19. Cellular pathways of source leaf phloem loading and phloem unloading in developing stems of Sorghum bicolor in relation to stem sucrose storage. Milne RJ; Offler CE; Patrick JW; Grof CPL Funct Plant Biol; 2015 Oct; 42(10):957-970. PubMed ID: 32480736 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the role of SWEET13 in phloem loading of the C Chen L; Ganguly DR; Shafik SH; Ermakova M; Pogson BJ; Grof CPL; Sharwood RE; Furbank RT Plant J; 2022 Feb; 109(3):615-632. PubMed ID: 34780111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]