BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23805235)

  • 1. The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment.
    Staggs SE; Beckman EM; Keely SP; Mackwan R; Ware MW; Moyer AP; Ferretti JA; Sayed A; Xiao L; Villegas EN
    PLoS One; 2013; 8(6):e66562. PubMed ID: 23805235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples.
    Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U
    Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern.
    Wang D; Jiang P; Yang X; Zhang J; Chen T; Hu M; Cacciò SM; Yin J; Zhu G
    Water Res; 2024 Jul; 258():121788. PubMed ID: 38810599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water.
    Li N; Neumann NF; Ruecker N; Alderisio KA; Sturbaum GD; Villegas EN; Chalmers R; Monis P; Feng Y; Xiao L
    Appl Environ Microbiol; 2015 Sep; 81(17):5845-54. PubMed ID: 26092455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CP2 gene as a useful viability marker for Cryptosporidium parvum.
    Lee SU; Joung M; Ahn MH; Huh S; Song H; Park WY; Yu JR
    Parasitol Res; 2008 Feb; 102(3):381-7. PubMed ID: 18060431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts.
    Sturbaum GD; Reed C; Hoover PJ; Jost BH; Marshall MM; Sterling CR
    Appl Environ Microbiol; 2001 Jun; 67(6):2665-8. PubMed ID: 11375178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts.
    Fontaine M; Guillot E
    FEMS Microbiol Lett; 2003 Sep; 226(2):237-43. PubMed ID: 14553917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR.
    Alonso JL; Amorós I; Guy RA
    Parasitol Res; 2014 Jul; 113(7):2671-8. PubMed ID: 24781028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of differences between DNA content of cell-cultured and freely suspended oocysts of Cryptosporidium parvum and their suitability as DNA standards in qPCR.
    Woolsey ID; Blomstrand B; Øines Ø; Enemark HL
    Parasit Vectors; 2019 Dec; 12(1):596. PubMed ID: 31856894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum.
    Hallier-Soulier S; Guillot E
    Environ Microbiol; 2003 Jul; 5(7):592-8. PubMed ID: 12823191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An easy 'one tube' method to estimate viability of Cryptosporidium oocysts using real-time qPCR.
    Paziewska-Harris A; Schoone G; Schallig HD
    Parasitol Res; 2016 Jul; 115(7):2873-7. PubMed ID: 27095569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP.
    Xiao L; Lal AA; Jiang J
    Methods Mol Biol; 2004; 268():163-76. PubMed ID: 15156028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of viable Cryptosporidium parvum in soil by reverse transcription-real-time PCR targeting hsp70 mRNA.
    Liang Z; Keeley A
    Appl Environ Microbiol; 2011 Sep; 77(18):6476-85. PubMed ID: 21803904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples.
    Leetz AS; Sotiriadou I; Ongerth J; Karanis P
    Parasitol Res; 2007 Sep; 101(4):951-62. PubMed ID: 17514380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.
    Fontaine M; Guillot E
    J Microbiol Methods; 2003 Jul; 54(1):29-36. PubMed ID: 12732419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing.
    Hashimoto A; Sugimoto H; Morita S; Hirata T
    Water Res; 2006 Jul; 40(13):2527-32. PubMed ID: 16790257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water.
    Johnson AM; Giovanni GD; Rochelle PA
    Appl Environ Microbiol; 2012 Jan; 78(1):156-62. PubMed ID: 22038611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and differentiation of Cryptosporidium hominis and Cryptosporidium parvum by dual TaqMan assays.
    Jothikumar N; da Silva AJ; Moura I; Qvarnstrom Y; Hill VR
    J Med Microbiol; 2008 Sep; 57(Pt 9):1099-1105. PubMed ID: 18719179
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Pignata C; Bonetta S; Bonetta S; Cacciò SM; Sannella AR; Gilli G; Carraro E
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31185673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.