These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23805235)

  • 21. PCR cloning and nucleotide sequence determination of the 18S rRNA genes and internal transcribed spacer 1 of the protozoan parasites Cryptosporidium parvum and Cryptosporidium muris.
    Cai J; Collins MD; McDonald V; Thompson DE
    Biochim Biophys Acta; 1992 Jul; 1131(3):317-20. PubMed ID: 1627648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system.
    Kumar T; Abd Majid MA; Onichandran S; Jaturas N; Andiappan H; Salibay CC; Tabo HA; Tabo N; Dungca JZ; Tangpong J; Phiriyasamith S; Yuttayong B; Polseela R; Do BN; Sawangjaroen N; Tan TC; Lim YA; Nissapatorn V
    Infect Dis Poverty; 2016 Jan; 5():3. PubMed ID: 26763230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presence of Cryptosporidium spp. and Giardia duodenalis in drinking water samples in the north of Portugal.
    Almeida A; Moreira MJ; Soares S; Delgado Mde L; Figueiredo J; Silva E; Castro A; Cosa JM
    Korean J Parasitol; 2010 Mar; 48(1):43-8. PubMed ID: 20333284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological and genetic characterization of Cryptosporidium spp. and Giardia duodenalis isolates from five hydrographical basins in northern Portugal.
    Almeida A; Moreira MJ; Soares S; de Lurdes Delgado M; Figueiredo J; Magalhães ES; Castro A; Viana Da Costa A; Correia da Costa JM
    Korean J Parasitol; 2010 Jun; 48(2):105-11. PubMed ID: 20585525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an immunomagnetic bead separation-coupled quantitative PCR method for rapid and sensitive detection of Cryptosporidium parvum oocysts in calf feces.
    Gao S; Zhang M; Amer S; Luo J; Wang C; Wu S; Zhao B; He H
    Parasitol Res; 2014 Jun; 113(6):2069-77. PubMed ID: 24687282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and application of DNA-aptamer-coupled magnetic beads and aptasensors for the detection of
    Iqbal A; Liu J; Dixon B; Zargar B; Sattar SA
    Can J Microbiol; 2019 Nov; 65(11):851-857. PubMed ID: 31404505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of four RNA extraction methods for gene expression analyses of Cryptosporidium parvum and Toxoplasma gondii oocysts.
    See MJ; Staggs SE; Dubey JP; Villegas EN
    J Microbiol Methods; 2012 Jun; 89(3):185-92. PubMed ID: 22465221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection and speciation of Cryptosporidium spp. in environmental water samples by immunomagnetic separation, PCR and endonuclease restriction.
    Lowery CJ; Moore JE; Millar BC; Burke DP; McCorry KA; Crothers E; Dooley JS
    J Med Microbiol; 2000 Sep; 49(9):779-85. PubMed ID: 10966225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of DNA extraction and molecular detection of Cryptosporidium oocysts in natural mineral water sources.
    Nichols RA; Smith HV
    J Food Prot; 2004 Mar; 67(3):524-32. PubMed ID: 15035368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum.
    Rochelle PA; Ferguson DM; Handojo TJ; De Leon R; Stewart MH; Wolfe RL
    Appl Environ Microbiol; 1997 May; 63(5):2029-37. PubMed ID: 9143132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular epidemiology of Cryptosporidium species in Kpong and its environs, Ghana.
    Mensah GT; Ayeh-Kumi PF; Annang AK; Owusu-Frimpong I; Niampoma S; Brown CA
    PLoS One; 2023; 18(2):e0281216. PubMed ID: 36827402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative detection of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR).
    Kishida N; Miyata R; Furuta A; Izumiyama S; Tsuneda S; Sekiguchi Y; Noda N; Akiba M
    Water Res; 2012 Jan; 46(1):187-94. PubMed ID: 22088270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of qPCR and microscopy for the detection and enumeration of
    Robinson G; Elwin K; Jones M; Chalmers RM
    J Med Microbiol; 2023 Jun; 72(6):. PubMed ID: 37335085
    [No Abstract]   [Full Text] [Related]  

  • 34. Novel quantitative TaqMan real-time PCR assays for detection of Cryptosporidium at the genus level and genotyping of major human and cattle-infecting species.
    Burnet JB; Ogorzaly L; Tissier A; Penny C; Cauchie HM
    J Appl Microbiol; 2013 Apr; 114(4):1211-22. PubMed ID: 23230846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of excretion and molecular characterization of Cryptosporidium isolates in pre-weaned French beef calves.
    Rieux A; Chartier C; Pors I; Paraud C
    Vet Parasitol; 2013 Jul; 195(1-2):169-72. PubMed ID: 23312870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples.
    Yang R; Paparini A; Monis P; Ryan U
    Int J Parasitol; 2014 Dec; 44(14):1105-13. PubMed ID: 25229177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites.
    Quintero-Betancourt W; Peele ER; Rose JB
    J Microbiol Methods; 2002 May; 49(3):209-24. PubMed ID: 11869786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A highly sensitive method for detecting Cryptosporidium parvum oocysts recovered from source and finished water using RT-PCR directed to Cryspovirus RNA.
    de Souza MS; O'Brien C; Santin M; Jenkins M
    J Microbiol Methods; 2019 Jan; 156():77-80. PubMed ID: 30508558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices.
    Manore AJW; Harper SL; Aguilar B; Weese JS; Shapiro K
    J Microbiol Methods; 2019 Jan; 156():1-4. PubMed ID: 30468750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water.
    Rochelle PA; De Leon R; Stewart MH; Wolfe RL
    Appl Environ Microbiol; 1997 Jan; 63(1):106-14. PubMed ID: 8979344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.