These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23805244)

  • 21. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.
    Jun JJ; Longtin A; Maler L
    J Neurophysiol; 2012 Apr; 107(7):1996-2007. PubMed ID: 22190625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac ablation catheter guidance by means of a single equivalent moving dipole inverse algorithm.
    Lee K; Lv W; Ter-Ovanesyan E; Barley ME; Voysey GE; Galea AM; Hirschman GB; Leroy K; Marini RP; Barrett C; Armoundas AA; Cohen RJ
    Pacing Clin Electrophysiol; 2013 Jul; 36(7):811-22. PubMed ID: 23448231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Body modeling and model-based tracking for neuroethology.
    MacIver MA; Nelson ME
    J Neurosci Methods; 2000 Feb; 95(2):133-43. PubMed ID: 10752484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus.
    Fugère V; Krahe R
    J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple phalanx pattern leads to energy saving in cohesive fish schooling.
    Ashraf I; Bradshaw H; Ha TT; Halloy J; Godoy-Diana R; Thiria B
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9599-9604. PubMed ID: 28839092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulus predictability mediates a switch in locomotor smooth pursuit performance for Eigenmannia virescens.
    Roth E; Zhuang K; Stamper SA; Fortune ES; Cowan NJ
    J Exp Biol; 2011 Apr; 214(Pt 7):1170-80. PubMed ID: 21389203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.
    Wang SH; Cheng XE; Qian ZM; Liu Y; Chen YQ
    PLoS One; 2016; 11(4):e0154714. PubMed ID: 27128096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Source reconstruction of mesial-temporal epileptiform activity: comparison of inverse techniques.
    Waberski TD; Gobbelé R; Herrendorf G; Steinhoff BJ; Kolle R; Fuchs M; Paulus W; Buchner H
    Epilepsia; 2000 Dec; 41(12):1574-83. PubMed ID: 11114216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Social competition affects electric signal plasticity and steroid levels in the gymnotiform fish Brachyhypopomus gauderio.
    Salazar VL; Stoddard PK
    Horm Behav; 2009 Oct; 56(4):399-409. PubMed ID: 19647742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts.
    Thomas RA; Metzen MG; Chacron MJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29954835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.
    Wolf-Homeyer S; Engelmann J; Schneider A
    Bioinspir Biomim; 2018 Oct; 13(6):066008. PubMed ID: 30226470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
    Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES
    Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish.
    Nelson ME; MacIver MA; Coombs S
    Brain Behav Evol; 2002; 59(4):199-210. PubMed ID: 12138340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of EEG dipole source localization using implanted sources in the human brain.
    Krings T; Chiappa KH; Cuffin BN; Cochius JI; Connolly S; Cosgrove GR
    Clin Neurophysiol; 1999 Jan; 110(1):106-14. PubMed ID: 10348329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beamforming correction for dipole measurement using two-dimensional microphone arrays.
    Liu Y; Quayle AR; Dowling AP; Sijtsma P
    J Acoust Soc Am; 2008 Jul; 124(1):182-91. PubMed ID: 18646965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus.
    Engler G; Zupanc GK
    J Comp Physiol A; 2001 Nov; 187(9):747-56. PubMed ID: 11778836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the electric field of weakly electric fish.
    Babineau D; Longtin A; Lewis JE
    J Exp Biol; 2006 Sep; 209(Pt 18):3636-51. PubMed ID: 16943504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The coupled dipole model: an integrated model for multiple MEG/EEG data sets.
    Bijma F; de Munck JC; Böcker KB; Huizenga HM; Heethaar RM
    Neuroimage; 2004 Nov; 23(3):890-904. PubMed ID: 15528089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.