BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23805751)

  • 1. Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function.
    Teague WE; Soubias O; Petrache H; Fuller N; Hines KG; Rand RP; Gawrisch K
    Faraday Discuss; 2013; 161():383-95; discussion 419-59. PubMed ID: 23805751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the lipid matrix for structure and function of the GPCR rhodopsin.
    Soubias O; Gawrisch K
    Biochim Biophys Acta; 2012 Feb; 1818(2):234-40. PubMed ID: 21924236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y; Botelho AV; Martinez GV; Brown MF
    J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of rhodopsin function by properties of the membrane bilayer.
    Brown MF
    Chem Phys Lipids; 1994 Sep; 73(1-2):159-80. PubMed ID: 8001180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochemistry; 1993 Mar; 32(9):2438-54. PubMed ID: 8443184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ; Brown MF
    Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function.
    Soubias O; Teague WE; Hines KG; Gawrisch K
    Biophys J; 2015 Mar; 108(5):1125-32. PubMed ID: 25762324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of membrane elastic energy to rhodopsin function.
    Soubias O; Teague WE; Hines KG; Mitchell DC; Gawrisch K
    Biophys J; 2010 Aug; 99(3):817-24. PubMed ID: 20682259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin-lipid interactions studied by NMR.
    Soubias O; Gawrisch K
    Methods Enzymol; 2013; 522():209-27. PubMed ID: 23374188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function.
    Soubias O; Sodt AJ; Teague WE; Hines KG; Gawrisch K
    Biophys J; 2023 Mar; 122(6):973-983. PubMed ID: 36419350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content.
    Soubias O; Niu SL; Mitchell DC; Gawrisch K
    J Am Chem Soc; 2008 Sep; 130(37):12465-71. PubMed ID: 18712874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of polyunsaturated lipid bilayers important for rhodopsin function: a neutron diffraction study.
    Mihailescu M; Gawrisch K
    Biophys J; 2006 Jan; 90(1):L04-6. PubMed ID: 16258049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.
    Pera H; Kleijn JM; Leermakers FA
    J Chem Phys; 2014 Feb; 140(6):065102. PubMed ID: 24527938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.
    Soubias O; Polozov IV; Teague WE; Yeliseev AA; Gawrisch K
    Biochemistry; 2006 Dec; 45(51):15583-90. PubMed ID: 17176079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Components of the lateral pressure in lipid bilayers deduced from HII phase dimensions.
    Marsh D
    Biochim Biophys Acta; 1996 Mar; 1279(2):119-23. PubMed ID: 8603076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrosides alter the lyotropic and thermotropic phase transitions of DOPE:DOPC and DOPE:DOPC:sterol mixtures.
    Webb MS; Irving TC; Steponkus PL
    Biochim Biophys Acta; 1997 Jun; 1326(2):225-35. PubMed ID: 9218553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.