BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23805751)

  • 21. Molecular organization of cholesterol in unsaturated phosphatidylethanolamines: X-ray diffraction and solid state 2H NMR reveal differences with phosphatidylcholines.
    Shaikh SR; Cherezov V; Caffrey M; Soni SP; LoCascio D; Stillwell W; Wassall SR
    J Am Chem Soc; 2006 Apr; 128(16):5375-83. PubMed ID: 16620109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR.
    Barriga HM; Bazin R; Templer RH; Law RV; Ces O
    Langmuir; 2015 Mar; 31(10):2979-87. PubMed ID: 25738977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of cholesterol on rhodopsin stability in disk membranes.
    Albert AD; Boesze-Battaglia K; Paw Z; Watts A; Epand RM
    Biochim Biophys Acta; 1996 Sep; 1297(1):77-82. PubMed ID: 8841383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The curvature and cholesterol content of phospholipid bilayers alter the transbilayer distribution of specific molecular species of phosphatidylethanolamine.
    Williams EE; Cooper JA; Stillwell W; Jenski LJ
    Mol Membr Biol; 2000; 17(3):157-64. PubMed ID: 11128974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of PLCβ2 by the electrostatic and mechanical properties of lipid bilayers.
    Arduin A; Gaffney PR; Ces O
    Sci Rep; 2015 Aug; 5():12628. PubMed ID: 26243281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
    Brown MF; Salgado GF; Struts AV
    Biochim Biophys Acta; 2010 Feb; 1798(2):177-93. PubMed ID: 19716801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.
    Michel R; Subramaniam V; McArthur SL; Bondurant B; D'Ambruoso GD; Hall HK; Brown MF; Ross EE; Saavedra SS; Castner DG
    Langmuir; 2008 May; 24(9):4901-6. PubMed ID: 18393486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium.
    Mitchell DC; Straume M; Litman BJ
    Biochemistry; 1992 Jan; 31(3):662-70. PubMed ID: 1731921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.
    Botelho AV; Huber T; Sakmar TP; Brown MF
    Biophys J; 2006 Dec; 91(12):4464-77. PubMed ID: 17012328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of gramicidin on the structure of phospholipid assemblies.
    Szule JA; Rand RP
    Biophys J; 2003 Sep; 85(3):1702-12. PubMed ID: 12944285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect.
    Delange F; Merkx M; Bovee-Geurts PH; Pistorius AM; Degrip WJ
    Eur J Biochem; 1997 Jan; 243(1-2):174-80. PubMed ID: 9030737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix.
    Pan J; Dalzini A; Song L
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):201-209. PubMed ID: 30071193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids.
    Goh MWS; Tero R
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183626. PubMed ID: 33901442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suramin affects coupling of rhodopsin to transducin.
    Lehmann N; Krishna Aradhyam G; Fahmy K
    Biophys J; 2002 Feb; 82(2):793-802. PubMed ID: 11806921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids.
    Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA
    Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II.
    Beck M; Siebert F; Sakmar TP
    FEBS Lett; 1998 Oct; 436(3):304-8. PubMed ID: 9801137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water permeability of polyunsaturated lipid membranes measured by 17O NMR.
    Huster D; Jin AJ; Arnold K; Gawrisch K
    Biophys J; 1997 Aug; 73(2):855-64. PubMed ID: 9251802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receptor-dependent G-protein activation in lipidic cubic phase.
    Navarro J; Landau EM; Fahmy K
    Biopolymers; 2002; 67(3):167-77. PubMed ID: 11979595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.