These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23805758)

  • 1. Gibbs energy determinants of lipoprotein insertion into lipid membranes: the case study of Ras proteins.
    Weise K; Huster D; Kapoor S; Triola G; Waldmann H; Winter R
    Faraday Discuss; 2013; 161():549-61; discussion 563-89. PubMed ID: 23805758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization, dynamics, and segregation of Ras nanoclusters in membrane domains.
    Janosi L; Li Z; Hancock JF; Gorfe AA
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8097-102. PubMed ID: 22562795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing association of lipidated signaling proteins in heterogeneous membranes--partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association.
    Weise K; Triola G; Janosch S; Waldmann H; Winter R
    Biochim Biophys Acta; 2010 Jul; 1798(7):1409-17. PubMed ID: 20025847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the lipid anchor motif of N-ras on the interaction with lipid membranes: a surface plasmon resonance study.
    Gohlke A; Triola G; Waldmann H; Winter R
    Biophys J; 2010 May; 98(10):2226-35. PubMed ID: 20483331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of isoform-specific Ras lipidation motifs on protein partitioning and dynamics in model membrane systems of various complexity.
    Erwin N; Patra S; Dwivedi M; Weise K; Winter R
    Biol Chem; 2017 May; 398(5-6):547-563. PubMed ID: 27977396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoprotein insertion into membranes of various complexity: lipid sorting, interfacial adsorption and protein clustering.
    Erwin N; Sperlich B; Garivet G; Waldmann H; Weise K; Winter R
    Phys Chem Chem Phys; 2016 Apr; 18(13):8954-62. PubMed ID: 26960984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering lipid codes: K-Ras as a paradigm.
    Zhou Y; Hancock JF
    Traffic; 2018 Mar; 19(3):157-165. PubMed ID: 29120102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing ras effector interactions on nanoparticle supported lipid bilayers.
    Filchtinski D; Bee C; Savopol T; Engelhard M; Becker CF; Herrmann C
    Bioconjug Chem; 2008 Sep; 19(9):1938-44. PubMed ID: 18712896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases.
    Larsen JB; Jensen MB; Bhatia VK; Pedersen SL; Bjørnholm T; Iversen L; Uline M; Szleifer I; Jensen KJ; Hatzakis NS; Stamou D
    Nat Chem Biol; 2015 Mar; 11(3):192-4. PubMed ID: 25622090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H-ras protein in a bilayer: interaction and structure perturbation.
    Gorfe AA; Babakhani A; McCammon JA
    J Am Chem Soc; 2007 Oct; 129(40):12280-6. PubMed ID: 17880077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipidated membrane anchor of full length N-Ras protein shows an extensive dynamics as revealed by solid-state NMR spectroscopy.
    Reuther G; Tan KT; Vogel A; Nowak C; Arnold K; Kuhlmann J; Waldmann H; Huster D
    J Am Chem Soc; 2006 Oct; 128(42):13840-6. PubMed ID: 17044712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of line tension on the lateral organization of lipid membranes.
    García-Sáez AJ; Chiantia S; Schwille P
    J Biol Chem; 2007 Nov; 282(46):33537-33544. PubMed ID: 17848582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring.
    de Planque MR; Killian JA
    Mol Membr Biol; 2003; 20(4):271-84. PubMed ID: 14578043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.
    Hoernke M; Schwieger C; Kerth A; Blume A
    Biochim Biophys Acta; 2012 Jul; 1818(7):1663-72. PubMed ID: 22433675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of interleaflet coupling due to compounds displaying rapid translocation in lipid membranes.
    Reigada R
    Sci Rep; 2016 Sep; 6():32934. PubMed ID: 27596355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic mismatch between proteins and lipids in membranes.
    Killian JA
    Biochim Biophys Acta; 1998 Nov; 1376(3):401-15. PubMed ID: 9805000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reinterpretation of neutron scattering experiments on a lipidated Ras peptide using replica exchange molecular dynamics.
    Vogel A; Roark M; Feller SE
    Biochim Biophys Acta; 2012 Feb; 1818(2):219-24. PubMed ID: 21872568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.