These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23805835)

  • 1. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.
    Hägglund C; Zeltzer G; Ruiz R; Thomann I; Lee HB; Brongersma ML; Bent SF
    Nano Lett; 2013 Jul; 13(7):3352-7. PubMed ID: 23805835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huge local field enhancement in perfect plasmonic absorbers.
    Albooyeh M; Simovski CR
    Opt Express; 2012 Sep; 20(20):21888-95. PubMed ID: 23037338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K
    Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography.
    Zhu P; Shi H; Guo LJ
    Opt Express; 2012 May; 20(11):12521-9. PubMed ID: 22714240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission line equivalent circuit model applied to a plasmonic grating nanosurface for light trapping.
    Polemi A; Shuford KL
    Opt Express; 2012 Jan; 20(1):A141-56. PubMed ID: 22379681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials.
    Dong ZG; Liu H; Li T; Zhu ZH; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2008 Dec; 16(25):20974-80. PubMed ID: 19065237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between localization and absorption in disordered waveguides.
    Yamilov AG; Payne B
    Opt Express; 2013 May; 21(10):11688-97. PubMed ID: 23736391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orders of magnitude enhancement of mode splitting by plasmonic intracavity resonance.
    Tai CY; Yu WH
    Opt Express; 2012 Sep; 20(20):22172-80. PubMed ID: 23037365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subwavelength single layer absorption resonance antireflection coatings.
    Huber SP; van de Kruijs RW; Yakshin AE; Zoethout E; Boller KJ; Bijkerk F
    Opt Express; 2014 Jan; 22(1):490-7. PubMed ID: 24515009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.
    Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA
    Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective behavior of impedance matched plasmonic nanocavities.
    Polyakov A; Zolotorev M; Schuck PJ; Padmore HA
    Opt Express; 2012 Mar; 20(7):7685-93. PubMed ID: 22453447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings.
    Lee YC; Huang CF; Chang JY; Wu ML
    Opt Express; 2008 May; 16(11):7969-75. PubMed ID: 18545506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloaking and enhanced scattering of core-shell plasmonic nanowires.
    Mirzaei A; Shadrivov IV; Miroshnichenko AE; Kivshar YS
    Opt Express; 2013 May; 21(9):10454-9. PubMed ID: 23669901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical coupling in dissipative surface-plasmon resonators with multiple ports.
    Yoon J; Seol KH; Song SH; Magnusson R
    Opt Express; 2010 Dec; 18(25):25702-11. PubMed ID: 21164916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanodisk array design for effective light trapping in ultrathin c-Si.
    Kim I; Jeong DS; Lee WS; Kim WM; Lee TS; Lee DK; Song JH; Kim JK; Lee KS
    Opt Express; 2014 Oct; 22 Suppl 6():A1431-9. PubMed ID: 25607300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.