These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 23805840)
21. Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. Morales VL; Zhang W; Gao B; Lion LW; Bisogni JJ; McDonough BA; Steenhuis TS Water Res; 2011 Feb; 45(4):1691-701. PubMed ID: 21193215 [TBL] [Abstract][Full Text] [Related]
22. Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining. Zhang W; Wu S; Qin Y; Li S; Lei L; Sun S; Yang Y Environ Pollut; 2021 Feb; 270():116072. PubMed ID: 33223339 [TBL] [Abstract][Full Text] [Related]
23. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Bradford SA; Kim HN; Haznedaroglu BZ; Torkzaban S; Walker SL Environ Sci Technol; 2009 Sep; 43(18):6996-7002. PubMed ID: 19806733 [TBL] [Abstract][Full Text] [Related]
24. Modeling the co-transport of viruses and colloids in unsaturated porous media. Seetha N; Mohan Kumar MS; Majid Hassanizadeh S J Contam Hydrol; 2015 Oct; 181():82-101. PubMed ID: 25681069 [TBL] [Abstract][Full Text] [Related]
25. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Fang J; Xu MJ; Wang DJ; Wen B; Han JY Water Res; 2013 Mar; 47(3):1399-408. PubMed ID: 23276424 [TBL] [Abstract][Full Text] [Related]
26. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media. Sasidharan S; Bradford SA; Torkzaban S; Ye X; Vanderzalm J; Du X; Page D Sci Total Environ; 2017 Dec; 603-604():406-415. PubMed ID: 28641182 [TBL] [Abstract][Full Text] [Related]
27. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers. Pazmino EF; Ma H; Johnson WP Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252 [TBL] [Abstract][Full Text] [Related]
28. Interfacial interactions and colloid retention under steady flows in a capillary channel. Lazouskaya V; Jin Y; Or D J Colloid Interface Sci; 2006 Nov; 303(1):171-84. PubMed ID: 16930611 [TBL] [Abstract][Full Text] [Related]
29. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling. Vitorge E; Szenknect S; Martins JM; Gaudet JP Environ Sci Process Impacts; 2013 Aug; 15(8):1590-600. PubMed ID: 23812006 [TBL] [Abstract][Full Text] [Related]
30. Causes and implications of colloid and microorganism retention hysteresis. Bradford SA; Kim H J Contam Hydrol; 2012 Sep; 138-139():83-92. PubMed ID: 22820488 [TBL] [Abstract][Full Text] [Related]
31. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property. Zhuang J; Qi J; Jin Y Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847 [TBL] [Abstract][Full Text] [Related]
32. Aquasols: on the role of secondary minima. Hahn MW; Abadzic D; O'Melia CR Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589 [TBL] [Abstract][Full Text] [Related]
33. Modeling colloid attachment, straining, and exclusion in saturated porous media. Bradford SA; Simunek J; Bettahar M; Van Genuchten MT; Yates SR Environ Sci Technol; 2003 May; 37(10):2242-50. PubMed ID: 12785531 [TBL] [Abstract][Full Text] [Related]
34. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations. Johnson WP; Pazmino E; Ma H Water Res; 2010 Feb; 44(4):1158-69. PubMed ID: 20132959 [TBL] [Abstract][Full Text] [Related]
35. Coupled factors influencing detachment of nano- and micro-sized particles from primary minima. Shen C; Lazouskaya V; Jin Y; Li B; Ma Z; Zheng W; Huang Y J Contam Hydrol; 2012 Jun; 134-135():1-11. PubMed ID: 22575872 [TBL] [Abstract][Full Text] [Related]
36. Different roles of silica nanoparticles played in virus transport in saturated and unsaturated porous media. Qin Y; Wen Z; Zhang W; Chai J; Liu D; Wu S Environ Pollut; 2020 Apr; 259():113861. PubMed ID: 31918138 [TBL] [Abstract][Full Text] [Related]
37. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads. Syngouna VI; Chrysikopoulos CV J Colloid Interface Sci; 2015 Feb; 440():140-50. PubMed ID: 25460700 [TBL] [Abstract][Full Text] [Related]
38. Colloid straining within saturated heterogeneous porous media. Porubcan AA; Xu S Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052 [TBL] [Abstract][Full Text] [Related]
39. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media. Tian Y; Gao B; Morales VL; Wang Y; Wu L J Hazard Mater; 2012 Nov; 239-240():333-9. PubMed ID: 23009789 [TBL] [Abstract][Full Text] [Related]
40. Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry. He J; Wang D; Zhang W; Zhou D Chemosphere; 2019 Nov; 235():643-650. PubMed ID: 31276877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]