These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23805874)

  • 21. Effects of droplet crystallization and melting on the aroma release properties of a model oil-in-water emulsion.
    Ghosh S; Peterson DG; Coupland JN
    J Agric Food Chem; 2006 Mar; 54(5):1829-37. PubMed ID: 16506840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.
    Arecchi A; Mannino S; Weiss J
    J Food Sci; 2010 Aug; 75(6):N80-8. PubMed ID: 20722944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.
    Thivilliers F; Laurichesse E; Saadaoui H; Leal-Calderon F; Schmitt V
    Langmuir; 2008 Dec; 24(23):13364-75. PubMed ID: 18956850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect.
    Sun W; Sun D; Wei Y; Liu S; Zhang S
    J Colloid Interface Sci; 2007 Jul; 311(1):228-36. PubMed ID: 17379236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic study of aggregation of milk protein and/or surfactant-stabilized oil-in-water emulsions by sedimentation field-flow fractionation.
    Kenta S; Raikos V; Vagena A; Sevastos D; Kapolos J; Koliadima A; Karaiskakis G
    J Chromatogr A; 2013 Aug; 1305():221-9. PubMed ID: 23899382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of electrostatic deposition of anionic polysaccharides on the stability of oil droplets coated by lactoferrin.
    Tokle T; Lesmes U; McClements DJ
    J Agric Food Chem; 2010 Sep; 58(17):9825-32. PubMed ID: 20707308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical stability maps for guiding preparation of emulsions stabilized by protein-polysaccharide interfacial complexes.
    Cho YH; McClements DJ
    Langmuir; 2009 Jun; 25(12):6649-57. PubMed ID: 19432398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of dipalmitoylphosphatidylcholine (or dioleoylphosphatidylcholine) and phospholipase A2 enzyme on the properties of emulsions.
    Wiącek AE
    J Colloid Interface Sci; 2012 May; 373(1):75-83. PubMed ID: 21993551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions?
    Tan HL; McGrath KM
    J Colloid Interface Sci; 2013 Aug; 403():7-15. PubMed ID: 23683496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.
    Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP
    J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets.
    Li X; Wang X; Xu D; Cao Y; Wang S; Wang B; Wang C; Sun B
    Food Funct; 2017 Aug; 8(8):2748-2759. PubMed ID: 28702650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of different organic phases for water-in-oil xanthan fermentation.
    Kuttuva SG; Restrepo AS; Ju LK
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):340-5. PubMed ID: 14564488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear flow behaviour and emulsion-stabilizing effect of natural polysaccharide-protein gum in aqueous system and oil/water (O/W) emulsion.
    Amid BT; Mirhosseini H
    Colloids Surf B Biointerfaces; 2013 Mar; 103():430-40. PubMed ID: 23261563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size.
    Guo Q; Ye A; Lad M; Dalgleish D; Singh H
    Soft Matter; 2014 Jun; 10(23):4173-83. PubMed ID: 24763731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models.
    Malaki Nik A; Wright AJ; Corredig M
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):321-30. PubMed ID: 21194901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of emulsion rheology through electrostatic heteroaggregation of oppositely charged lipid droplets: influence of particle size and emulsifier content.
    Mao Y; McClements DJ
    J Colloid Interface Sci; 2012 Aug; 380(1):60-6. PubMed ID: 22683214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of interfacial milk protein complexation to stabilize oil-in-water emulsions against calcium.
    Ye A; Lo J; Singh H
    J Colloid Interface Sci; 2012 Jul; 378(1):184-90. PubMed ID: 22579517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement.
    Rao J; McClements DJ
    J Agric Food Chem; 2010 Jun; 58(11):7059-66. PubMed ID: 20476765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polysaccharide-coated oil droplets in oil-in-water emulsions as targetable carriers for lipophilic drugs.
    Iwamoto K; Kato T; Kawahara M; Koyama N; Watanabe S; Miyake Y; Sunamoto J
    J Pharm Sci; 1991 Mar; 80(3):219-24. PubMed ID: 2051336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.