These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23805909)
1. Adiabatic eigenfunction based approach to coherent transfer: application to the Fenna-Matthews-Olson (FMO) complex and the role of correlations in the efficiency of energy transfer. Bhattacharyya P; Sebastian KL J Phys Chem A; 2013 Sep; 117(36):8806-13. PubMed ID: 23805909 [TBL] [Abstract][Full Text] [Related]
2. Adiabatic eigenfunction-based approach for coherent excitation transfer: an almost analytical treatment of the Fenna-Matthews-Olson complex. Bhattacharyya P; Sebastian KL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062712. PubMed ID: 23848720 [TBL] [Abstract][Full Text] [Related]
3. A stochastic surrogate Hamiltonian approach of coherent and incoherent exciton transport in the Fenna-Matthews-Olson complex. Renaud N; Ratner MA; Mujica V J Chem Phys; 2011 Aug; 135(7):075102. PubMed ID: 21861585 [TBL] [Abstract][Full Text] [Related]
4. Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency. Chen X; Silbey RJ J Phys Chem B; 2011 May; 115(18):5499-509. PubMed ID: 21384851 [TBL] [Abstract][Full Text] [Related]
5. A resonance mechanism of efficient energy transfer mediated by Fenna-Matthews-Olson complex. Alicki R; Miklaszewski W J Chem Phys; 2012 Apr; 136(13):134103. PubMed ID: 22482536 [TBL] [Abstract][Full Text] [Related]
6. Coherence and Its Role in Excitation Energy Transfer in Fenna-Matthews-Olson Complex. Singh D; Dasgupta S J Phys Chem B; 2017 Feb; 121(6):1290-1294. PubMed ID: 28102679 [TBL] [Abstract][Full Text] [Related]
7. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. Rebentrost P; Mohseni M; Aspuru-Guzik A J Phys Chem B; 2009 Jul; 113(29):9942-7. PubMed ID: 19603843 [TBL] [Abstract][Full Text] [Related]
8. Environment-assisted quantum walks in photosynthetic energy transfer. Mohseni M; Rebentrost P; Lloyd S; Aspuru-Guzik A J Chem Phys; 2008 Nov; 129(17):174106. PubMed ID: 19045332 [TBL] [Abstract][Full Text] [Related]
9. On the Controversial Nature of the 825 nm Exciton Band in the FMO Protein Complex. Kell A; Acharya K; Zazubovich V; Jankowiak R J Phys Chem Lett; 2014 Apr; 5(8):1450-6. PubMed ID: 26269993 [TBL] [Abstract][Full Text] [Related]
10. Preparational effects on the excitation energy transfer in the FMO complex. Mühlbacher L; Kleinekathöfer U J Phys Chem B; 2012 Mar; 116(12):3900-6. PubMed ID: 22360690 [TBL] [Abstract][Full Text] [Related]
11. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
12. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control. Fransted KA; Caram JR; Hayes D; Engel GS J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349 [TBL] [Abstract][Full Text] [Related]
13. Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation. Mulvihill E; Lenn KM; Gao X; Schubert A; Dunietz BD; Geva E J Chem Phys; 2021 May; 154(20):204109. PubMed ID: 34241158 [TBL] [Abstract][Full Text] [Related]
14. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. Huo P; Coker DF J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214 [TBL] [Abstract][Full Text] [Related]
15. The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. Schmidt Am Busch M; Müh F; El-Amine Madjet M; Renger T J Phys Chem Lett; 2011 Jan; 2(2):93-8. PubMed ID: 26295526 [TBL] [Abstract][Full Text] [Related]
16. Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions. Oh SA; Coker DF; Hutchinson DAW J Chem Phys; 2019 Feb; 150(8):085102. PubMed ID: 30823745 [TBL] [Abstract][Full Text] [Related]
17. Efficient and accurate simulations of two-dimensional electronic photon-echo signals: Illustration for a simple model of the Fenna-Matthews-Olson complex. Sharp LZ; Egorova D; Domcke W J Chem Phys; 2010 Jan; 132(1):014501. PubMed ID: 20078166 [TBL] [Abstract][Full Text] [Related]
18. Rerouting excitation transfers in the Fenna-Matthews-Olson complex. Chen GY; Lambert N; Li CM; Chen YN; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032120. PubMed ID: 24125226 [TBL] [Abstract][Full Text] [Related]
19. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna-Matthews-Olson Trimer from Chlorobaculum tepidum. Kell A; Blankenship RE; Jankowiak R J Phys Chem A; 2016 Aug; 120(31):6146-54. PubMed ID: 27438068 [TBL] [Abstract][Full Text] [Related]
20. Impact of Spatial Inhomogeneity on Excitation Energy Transport in the Fenna-Matthews-Olson Complex. Bose A; Walters PL J Phys Chem B; 2023 Sep; 127(36):7663-7673. PubMed ID: 37647510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]