These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 23805917)
1. Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era. de Siqueira Ferreira S; Nishiyama MY; Paterson AH; Souza GM Genome Biol; 2013 Jun; 14(6):210. PubMed ID: 23805917 [TBL] [Abstract][Full Text] [Related]
2. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. Wang Y; Chan KX; Long SP Plant J; 2021 Jul; 107(2):343-359. PubMed ID: 34087011 [TBL] [Abstract][Full Text] [Related]
3. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126 [TBL] [Abstract][Full Text] [Related]
4. Towards much more efficient biofuel crops - can sugarcane pave the way? Tammisola J GM Crops; 2010; 1(4):181-98. PubMed ID: 21844673 [TBL] [Abstract][Full Text] [Related]
5. Sugarcane improvement: how far can we go? Dal-Bianco M; Carneiro MS; Hotta CT; Chapola RG; Hoffmann HP; Garcia AA; Souza GM Curr Opin Biotechnol; 2012 Apr; 23(2):265-70. PubMed ID: 21983270 [TBL] [Abstract][Full Text] [Related]
6. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops. Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898 [TBL] [Abstract][Full Text] [Related]
7. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Zhang G; Ge C; Xu P; Wang S; Cheng S; Han Y; Wang Y; Zhuang Y; Hou X; Yu T; Xu X; Deng S; Li Q; Yang Y; Yin X; Wang W; Liu W; Zheng C; Sun X; Wang Z; Ming R; Dong S; Ma J; Zhang X; Chen C Nat Plants; 2021 May; 7(5):608-618. PubMed ID: 33958777 [TBL] [Abstract][Full Text] [Related]
8. Sweet sorghum as a model system for bioenergy crops. Calviño M; Messing J Curr Opin Biotechnol; 2012 Jun; 23(3):323-9. PubMed ID: 22204822 [TBL] [Abstract][Full Text] [Related]
9. Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. Vermerris W J Integr Plant Biol; 2011 Feb; 53(2):105-19. PubMed ID: 21205186 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716 [TBL] [Abstract][Full Text] [Related]
11. Genetic engineering of energy crops: a strategy for biofuel production in China. Xie G; Peng L J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188 [TBL] [Abstract][Full Text] [Related]
12. Genomic Selection for Optimum Index with Dry Biomass Yield, Dry Mass Fraction of Fresh Material, and Plant Height in Biomass Sorghum. Habyarimana E; Lopez-Cruz M; Baloch FS Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31948110 [TBL] [Abstract][Full Text] [Related]
13. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. Ndimba BK; Ndimba RJ; Johnson TS; Waditee-Sirisattha R; Baba M; Sirisattha S; Shiraiwa Y; Agrawal GK; Rakwal R J Proteomics; 2013 Nov; 93():234-44. PubMed ID: 23792822 [TBL] [Abstract][Full Text] [Related]
14. Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Dillon SL; Shapter FM; Henry RJ; Cordeiro G; Izquierdo L; Lee LS Ann Bot; 2007 Nov; 100(5):975-89. PubMed ID: 17766842 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic analysis of transgressive segregants revealed the central role of photosynthetic capacity and efficiency in biomass accumulation in sugarcane. Singh R; Jones T; Wai CM; Jifon J; Nagai C; Ming R; Yu Q Sci Rep; 2018 Mar; 8(1):4415. PubMed ID: 29535363 [TBL] [Abstract][Full Text] [Related]
16. Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract from Water Plants Sequestering CO Romanowska-Duda Z; Janas R; Grzesik M Molecules; 2024 Sep; 29(18):. PubMed ID: 39339392 [TBL] [Abstract][Full Text] [Related]
18. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. Swaminathan K; Chae WB; Mitros T; Varala K; Xie L; Barling A; Glowacka K; Hall M; Jezowski S; Ming R; Hudson M; Juvik JA; Rokhsar DS; Moose SP BMC Genomics; 2012 Apr; 13():142. PubMed ID: 22524439 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Zale J; Jung JH; Kim JY; Pathak B; Karan R; Liu H; Chen X; Wu H; Candreva J; Zhai Z; Shanklin J; Altpeter F Plant Biotechnol J; 2016 Feb; 14(2):661-9. PubMed ID: 26058948 [TBL] [Abstract][Full Text] [Related]
20. Oviposition Preference and Survival of the Mexican Rice Borer (Lepidoptera: Crambidae) in Bioenergy and Conventional Sugarcane and Sorghum. VanWeelden MT; Wilson BE; Beuzelin JM; Reagan TE; Way MO Environ Entomol; 2017 Aug; 46(4):855-863. PubMed ID: 28595271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]