These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23805977)
41. Cu(I) dinuclear complexes with tripodal ligands vs monodentate donors: triphenylphosphine, thiourea, and pyridine. A 1H NMR titration study. Gennari M; Lanfranchi M; Marchiò L; Pellinghelli MA; Tegoni M; Cammi R Inorg Chem; 2006 Apr; 45(8):3456-66. PubMed ID: 16602807 [TBL] [Abstract][Full Text] [Related]
42. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex. Liu YF; Yu JG; Siegbahn PE; Blomberg MR Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840 [TBL] [Abstract][Full Text] [Related]
43. Theoretical mechanism studies on the competitive CO-induced N-N bond cleavage of N2O with N-O bond cleavage mediated by (η5-C5Me5)Mo[N((i)Pr)C(Me)N((i)Pr)](CO)2. Lu N; Wang H Dalton Trans; 2013 Oct; 42(38):13931-9. PubMed ID: 23925148 [TBL] [Abstract][Full Text] [Related]
44. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer. Matsuo T; Mayer JM Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449 [TBL] [Abstract][Full Text] [Related]
45. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms. Strautmann JB; Freiherr von Richthofen CG; Heinze-Brückner G; DeBeer S; Bothe E; Bill E; Weyhermüller T; Stammler A; Bögge H; Glaser T Inorg Chem; 2011 Jan; 50(1):155-71. PubMed ID: 21114259 [TBL] [Abstract][Full Text] [Related]
46. Reactions of the dirhenium(II) complex Re2Cl4(mu-dppm)2 with pyridinecarboxylic acids. Examples of bidentate O,O versus N,O coordination and tridentate O,N,O coordination and structural isomers that contain the pyridine-2,6-dicarboxylate ligand. Chattopadhyay S; Fanwick PE; Walton RA Inorg Chem; 2003 Sep; 42(19):5924-31. PubMed ID: 12971761 [TBL] [Abstract][Full Text] [Related]
47. Mechanism of N2O reduction by the mu4-S tetranuclear CuZ cluster of nitrous oxide reductase. Gorelsky SI; Ghosh S; Solomon EI J Am Chem Soc; 2006 Jan; 128(1):278-90. PubMed ID: 16390158 [TBL] [Abstract][Full Text] [Related]
48. Borylene complexes (BH)L2 and nitrogen cation complexes (N+)L2: isoelectronic homologues of carbones CL2. Celik MA; Sure R; Klein S; Kinjo R; Bertrand G; Frenking G Chemistry; 2012 Apr; 18(18):5676-92. PubMed ID: 22434609 [TBL] [Abstract][Full Text] [Related]
49. Hydrogen atom abstraction by a mononuclear ferric hydroxide complex: insights into the reactivity of lipoxygenase. Goldsmith CR; Stack TD Inorg Chem; 2006 Jul; 45(15):6048-55. PubMed ID: 16842013 [TBL] [Abstract][Full Text] [Related]
50. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir). Tang CY; Thompson AL; Aldridge S J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531 [TBL] [Abstract][Full Text] [Related]
51. Theoretical prediction of the heats of formation of C2H5O* radicals derived from ethanol and of the kinetics of beta-C-C scission in the ethoxy radical. Matus MH; Nguyen MT; Dixon DA J Phys Chem A; 2007 Jan; 111(1):113-26. PubMed ID: 17201394 [TBL] [Abstract][Full Text] [Related]
52. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water. Surawatanawong P; Tye JW; Hall MB Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237 [TBL] [Abstract][Full Text] [Related]
53. A new tripodal iron(III) monophenolate complex: effects of ligand basicity, steric hindrance, and solvent on regioselective extradiol cleavage. Mayilmurugan R; Suresh E; Palaniandavar M Inorg Chem; 2007 Jul; 46(15):6038-49. PubMed ID: 17589990 [TBL] [Abstract][Full Text] [Related]
55. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage. Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480 [TBL] [Abstract][Full Text] [Related]
56. Insertion of carbon fragments into P(III)-N bonds in aminophosphines and aminobis(phosphines): synthesis, reactivity, and coordination chemistry of resulting phosphine oxide derivatives. Crystal and molecular structures of (Ph(2)P(O)CH(2))(2)NR (R = Me, (n)Pr, (n)Bu), Ph(2)P(O)CH(OH)(n)()Pr, and cis-[MoO(2)Cl(2)((Ph(2)P(O)CH(2))(2)NEt-kappaO,kappaO)]. Priya S; Balakrishna MS; Mague JT; Mobin SM Inorg Chem; 2003 Feb; 42(4):1272-81. PubMed ID: 12588166 [TBL] [Abstract][Full Text] [Related]
57. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties. Uzunova EL; Mikosch H Phys Chem Chem Phys; 2016 Apr; 18(16):11233-42. PubMed ID: 27053488 [TBL] [Abstract][Full Text] [Related]
58. A nitridoniobium(V) reagent that effects acid chloride to organic nitrile conversion: synthesis via heterodinuclear (Nb/Mo) dinitrogen cleavage, mechanistic insights, and recycling. Figueroa JS; Piro NA; Clough CR; Cummins CC J Am Chem Soc; 2006 Jan; 128(3):940-50. PubMed ID: 16417385 [TBL] [Abstract][Full Text] [Related]
59. P=N bond formation via incomplete N-atom transfer from a ferrous amide precursor. Adhikari D; Basuli F; Fan H; Huffman JC; Pink M; Mindiola DJ Inorg Chem; 2008 Jun; 47(11):4439-41. PubMed ID: 18461924 [TBL] [Abstract][Full Text] [Related]
60. A cycle for organic nitrile synthesis via dinitrogen cleavage. Curley JJ; Sceats EL; Cummins CC J Am Chem Soc; 2006 Nov; 128(43):14036-7. PubMed ID: 17061880 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]