These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23806127)

  • 1. Peptide-bridged assembly of hybrid nanomaterial and its application for caspase-3 detection.
    Shi Y; Yi C; Zhang Z; Zhang H; Li M; Yang M; Jiang Q
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6494-501. PubMed ID: 23806127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection.
    Shi Y; Zhang H; Yue Z; Zhang Z; Teng KS; Li MJ; Yi C; Yang M
    Nanotechnology; 2013 Sep; 24(37):375501. PubMed ID: 23974169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FITC-quencher based caspase 3-activatable nanoprobes for effectively sensing caspase 3 in vitro and in cells.
    Tang A; Mei B; Wang W; Hu W; Li F; Zhou J; Yang Q; Cui H; Wu M; Liang G
    Nanoscale; 2013 Oct; 5(19):8963-7. PubMed ID: 23970215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles.
    Qiang W; Liu H; Li W; Chen X; Xu D
    Anal Chim Acta; 2014 May; 828():92-8. PubMed ID: 24845820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemiluminescent Sensing for Caspase-3 Activity Based on Ru(bpy)3(2+)-Doped Silica Nanoprobe.
    Dong YP; Chen G; Zhou Y; Zhu JJ
    Anal Chem; 2016 Feb; 88(3):1922-9. PubMed ID: 26730888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺.
    Wu S; Duan N; Shi Z; Fang C; Wang Z
    Talanta; 2014 Oct; 128():327-36. PubMed ID: 25059168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Fluorescent FRET Probes for "Off-On" Detection of L-Cysteine Based on Gold Nanoparticles and Porous Silicon Nanoparticles in Ethanol Solution.
    Zhang H; Jia Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles-based fluorescence resonance energy transfer for competitive immunoassay of biomolecules.
    Chen J; Huang Y; Zhao S; Lu X; Tian J
    Analyst; 2012 Dec; 137(24):5885-90. PubMed ID: 23120746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CB[7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy.
    Gao Y; Zou F; Wu B; Wang X; Zhang J; Koh K; Chen H
    Biosens Bioelectron; 2016 Jul; 81():207-213. PubMed ID: 26950645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles.
    Pan Y; Guo M; Nie Z; Huang Y; Peng Y; Liu A; Qing M; Yao S
    Chem Commun (Camb); 2012 Jan; 48(7):997-9. PubMed ID: 22143383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered peptides for nanohybrid assemblies.
    Seker UO; Sharma VK; Akhavan S; Demir HV
    Langmuir; 2014 Mar; 30(8):2137-43. PubMed ID: 24494655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caspase sensitive gold nanoparticle for apoptosis imaging in live cells.
    Sun IC; Lee S; Koo H; Kwon IC; Choi K; Ahn CH; Kim K
    Bioconjug Chem; 2010 Nov; 21(11):1939-42. PubMed ID: 20936793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin.
    Saleh SM; Müller R; Mader HS; Duerkop A; Wolfbeis OS
    Anal Bioanal Chem; 2010 Oct; 398(4):1615-23. PubMed ID: 20446080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensors design based on hybrid gold-silica nanostructures.
    Bagheri E; Ansari L; Sameiyan E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Biosens Bioelectron; 2020 Apr; 153():112054. PubMed ID: 32056665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.
    Wang K; He X; Yang X; Shi H
    Acc Chem Res; 2013 Jul; 46(7):1367-76. PubMed ID: 23489227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide directed synthesis of silica coated gold nanocables.
    Kim J; Myung NV; Hur HG
    Chem Commun (Camb); 2010 Jun; 46(24):4366-8. PubMed ID: 20467688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen.
    Panikkanvalappil SR; El-Sayed MA
    J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-quantum dot-polystyrene microspheres as fluorescence resonance energy transfer probes for bioassays.
    Quach AD; Crivat G; Tarr MA; Rosenzweig Z
    J Am Chem Soc; 2011 Feb; 133(7):2028-30. PubMed ID: 21280652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Self-Assembly of Proteins into Discrete Nanoarchitectures Templated by Gold Nanoparticles via Monovalent Interfacial Engineering.
    Ma L; Li F; Fang T; Zhang J; Wang Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):11024-31. PubMed ID: 25943563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.