These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23806419)

  • 1. Temperature prediction in high speed bone grinding using motor PWM signal.
    Tai BL; Zhang L; Wang AC; Sullivan S; Wang G; Shih AJ
    Med Eng Phys; 2013 Oct; 35(10):1545-9. PubMed ID: 23806419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery.
    Zhang L; Tai BL; Wang G; Zhang K; Sullivan S; Shih AJ
    Med Eng Phys; 2013 Oct; 35(10):1391-8. PubMed ID: 23683875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Fourier bioheat model for bone grinding with application to skull base neurosurgery.
    Kabiri A; Talaee MR
    Proc Inst Mech Eng H; 2022 Jan; 236(1):84-93. PubMed ID: 34423707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared thermography of high-speed grinding of bone in skull base neurosurgery.
    Shakouri E; Mirfallah P
    Proc Inst Mech Eng H; 2019 Jun; 233(6):648-656. PubMed ID: 31017535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Effect of Process Parameters on Bone Grinding Performance Based on On-Line Measurement of Temperature and Force Sensors.
    Zhang L; Zou L; Wen D; Wang X; Kong F; Piao Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of operating variables in improving the performance of skull base grinding.
    Gholampour S; Droessler J; Frim D
    Neurosurg Rev; 2022 Jun; 45(3):2431-2440. PubMed ID: 35258695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological evaluation of thermal damage to Osteocytes: A comparative study of conventional and ultrasonic-assisted bone grinding.
    Babbar A; Jain V; Gupta D; Agrawal D
    Med Eng Phys; 2021 Apr; 90():1-8. PubMed ID: 33781475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element simulation and integration of CEM43 °C and Arrhenius Models for ultrasonic-assisted skull bone grinding: A thermal dose model.
    Babbar A; Jain V; Gupta D; Agrawal D
    Med Eng Phys; 2021 Apr; 90():9-22. PubMed ID: 33781484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evaluation of machining forces, torque, and bone quality during skull bone grinding.
    Babbar A; Jain V; Gupta D
    Proc Inst Mech Eng H; 2020 Jun; 234(6):626-638. PubMed ID: 32181700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical investigation of heat generation and surface integrity of ZrO
    Bayat M; Adibi H; Barzegar A; Rezaei SM
    J Mech Behav Biomed Mater; 2022 Jul; 131():105226. PubMed ID: 35429766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical bone grinding mechanism modeling and experimental studyfor damage minimization in craniotomy.
    Hu Y; Hu X; Fan Z; Liu Z; Zhang C; Fu W
    Proc Inst Mech Eng H; 2022 Mar; 236(3):320-328. PubMed ID: 34894878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catheter thermal energy generation and temperature in rotational atherectomy.
    Liu Y; Liu Y; Zheng Y; Li B; Shih A
    Med Eng Phys; 2019 Aug; 70():29-38. PubMed ID: 31280926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of heat generation and risk of thermal necrosis during bone burring by means of three-dimensional dynamic elastoplastic finite element modelling.
    Chen YC; Hsiao CK; Tu YK; Tsai YJ; Hsiao AC; Lu CW; Yang CY
    Med Eng Phys; 2020 Jul; 81():1-12. PubMed ID: 32475768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial magnetic resonance-guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study.
    Monteith SJ; Medel R; Kassell NF; Wintermark M; Eames M; Snell J; Zadicario E; Grinfeld J; Sheehan JP; Elias WJ
    J Neurosurg; 2013 Feb; 118(2):319-28. PubMed ID: 23157185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoscope Holders in Cranial Neurosurgery: Part 2-An International Survey.
    Paraskevopoulos D; Constantini S; Bal J; Roth J
    World Neurosurg; 2018 Mar; 111():e632-e643. PubMed ID: 29305118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat generated by grinding during removal of ceramic brackets.
    Vukovich ME; Wood DP; Daley TD
    Am J Orthod Dentofacial Orthop; 1991 Jun; 99(6):505-12. PubMed ID: 1645495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Stress on Phase Transformations in Grinding by FE Modeling and Experimental Approaches.
    Xiu S; Deng Y; Kong X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31336596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing the Relationship between Cutting Speed and Output Parameters in Belt Grinding on Steels, Aluminum and Nickel Alloys: Development of Recommendations.
    Syreyshchikova NV; Pimenov DY; Gupta MK; Nadolny K; Giasin K; Sharma S
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The "no-drill" technique of anterior clinoidectomy: a cranial base approach to the paraclinoid and parasellar region.
    Chang DJ
    Neurosurgery; 2009 Mar; 64(3 Suppl):ons96-105; discussion ons105-6. PubMed ID: 19240577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hardness Prediction of Grind-Hardening Layer Based on Integrated Approach of Finite Element and Cellular Automata.
    Guo Y; Liu M; Yan Y
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.