BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23807032)

  • 1. Enhanced photodegradation of methyl orange with TiO₂ nanoparticles using a triboelectric nanogenerator.
    Su Y; Yang Y; Zhang H; Xie Y; Wu Z; Jiang Y; Fukata N; Bando Y; Wang ZL
    Nanotechnology; 2013 Jul; 24(29):295401. PubMed ID: 23807032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The degradation mechanism of methyl orange under photo-catalysis of TiO2.
    Yu L; Xi J; Li MD; Chan HT; Su T; Phillips DL; Chan WK
    Phys Chem Chem Phys; 2012 Mar; 14(10):3589-95. PubMed ID: 22310904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic decolorisation and mineralisation of orange dyes on immobilised titanium dioxide nanoparticles.
    Khataee AR; Pons MN; Zahraa O
    Water Sci Technol; 2010; 62(5):1112-20. PubMed ID: 20818053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles.
    Dai K; Chen H; Peng T; Ke D; Yi H
    Chemosphere; 2007 Nov; 69(9):1361-7. PubMed ID: 17588640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bifunctionalized dye-sensitized TiO(2) film for efficient degradation of methyl orange under visible light irradiation.
    Wu Q; Zhao J; Qin G; Wang X; Tong X; Xue S
    Water Sci Technol; 2012; 66(4):843-9. PubMed ID: 22766876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient photodegradation of dyes using light-induced self assembly TiO(2)/β-cyclodextrin hybrid nanoparticles under visible light irradiation.
    Zhang X; Wu F; Deng N
    J Hazard Mater; 2011 Jan; 185(1):117-23. PubMed ID: 20880630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays.
    Liao J; Lin S; Zhang L; Pan N; Cao X; Li J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):171-7. PubMed ID: 22117568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional hierarchical heterostructures of In₂S₃ nanosheets on electrospun TiO₂ nanofibers with enhanced visible photocatalytic activity.
    Zhang X; Li X; Shao C; Li J; Zhang M; Zhang P; Wang K; Lu N; Liu Y
    J Hazard Mater; 2013 Sep; 260():892-900. PubMed ID: 23872335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical TiO2/CdS "spindle-like" composite with high photodegradation and antibacterial capability under visible light irradiation.
    Gao P; Liu J; Zhang T; Sun DD; Ng W
    J Hazard Mater; 2012 Aug; 229-230():209-16. PubMed ID: 22717065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants.
    Lei P; Wang F; Gao X; Ding Y; Zhang S; Zhao J; Liu S; Yang M
    J Hazard Mater; 2012 Aug; 227-228():185-94. PubMed ID: 22658211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic activity of Ho-doped anatase titanium dioxide coated magnetite.
    Shi Z; Xiang Y; Zhang X; Yao S
    Photochem Photobiol; 2011; 87(3):626-31. PubMed ID: 21208216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu₂O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media.
    Ho WCJ; Tay Q; Qi H; Huang Z; Li J; Chen Z
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28441752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution.
    Monteagudo JM; Durán A
    Chemosphere; 2006 Nov; 65(7):1242-8. PubMed ID: 16762397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method.
    Asuha S; Zhou XG; Zhao S
    J Hazard Mater; 2010 Sep; 181(1-3):204-10. PubMed ID: 20510510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode.
    Hou Y; Qu J; Zhao X; Lei P; Wan D; Huang CP
    Sci Total Environ; 2009 Mar; 407(7):2431-9. PubMed ID: 19171372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation.
    Zhao K; Zhao G; Li P; Gao J; Lv B; Li D
    Chemosphere; 2010 Jun; 80(4):410-5. PubMed ID: 20434754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers.
    Chládková B; Evgenidou E; Kvítek L; Panáček A; Zbořil R; Kovář P; Lambropoulou D
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16514-24. PubMed ID: 26054457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of TiO(2)-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process.
    Zainal Z; Hui LK; Hussein MZ; Abdullah AH; Hamadneh IM
    J Hazard Mater; 2009 May; 164(1):138-45. PubMed ID: 18809254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic degradation of methyl orange using polymer-titania microcomposites.
    Coutinho CA; Gupta VK
    J Colloid Interface Sci; 2009 May; 333(2):457-64. PubMed ID: 19268963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification.
    Romanos GE; Athanasekou CP; Katsaros FK; Kanellopoulos NK; Dionysiou DD; Likodimos V; Falaras P
    J Hazard Mater; 2012 Apr; 211-212():304-16. PubMed ID: 21999989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.