BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23807181)

  • 1. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy.
    Kim S; Jeong S
    Lasers Med Sci; 2014 Mar; 29(2):637-44. PubMed ID: 23807181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tissue water content on the propagation of laser light during low-level laser therapy.
    Kim S; Shin S; Jeong S
    J Biomed Opt; 2015 May; 20(5):051027. PubMed ID: 25611979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics.
    Souza-Barros L; Dhaidan G; Maunula M; Solomon V; Gabison S; Lilge L; Nussbaum EL
    Lasers Surg Med; 2018 Apr; 50(4):291-301. PubMed ID: 29178437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical and thermal properties of nasal septal cartilage.
    Youn JI; Telenkov SA; Kim E; Bhavaraju NC; Wong BJ; Valvano JW; Milner TE
    Lasers Surg Med; 2000; 27(2):119-28. PubMed ID: 10960818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Properties and Fluence Distribution in Rabbit Head Tissues at Selected Laser Wavelengths.
    Shanshool AS; Lazareva EN; Hamdy O; Tuchin VV
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of skin temperature during low-level laser irradiation at 830 nm in a mouse model.
    Stadler I; Lanzafame RJ; Oskoui P; Zhang RY; Coleman J; Whittaker M
    Photomed Laser Surg; 2004 Jun; 22(3):227-31. PubMed ID: 15315730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin.
    Joensen J; Demmink JH; Johnson MI; Iversen VV; Lopes-Martins RÁ; Bjordal JM
    Photomed Laser Surg; 2011 Mar; 29(3):145-53. PubMed ID: 21219241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin penetration time-profiles for continuous 810 nm and Superpulsed 904 nm lasers in a rat model.
    Joensen J; Ovsthus K; Reed RK; Hummelsund S; Iversen VV; Lopes-Martins RÁ; Bjordal JM
    Photomed Laser Surg; 2012 Dec; 30(12):688-94. PubMed ID: 23025702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different LLLT on pituitrin-induced bradycardia in the rabbit.
    Zhao L; Shen XY; Gao JP; Ding GH; Wei JZ; Deng HP; Wang L; Zhao XY
    Lasers Med Sci; 2006 Jul; 21(2):61-6. PubMed ID: 16683181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring system for investigating the effect of temperature change on optical properties.
    Kara E; Çilesiz İ; Gülsoy M
    Lasers Med Sci; 2018 Nov; 33(8):1763-1768. PubMed ID: 29858971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm.
    Beek JF; Blokland P; Posthumus P; Aalders M; Pickering JW; Sterenborg HJ; van Gemert MJ
    Phys Med Biol; 1997 Nov; 42(11):2255-61. PubMed ID: 9394410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy.
    Angell-Petersen E; Hirschberg H; Madsen SJ
    J Biomed Opt; 2007; 12(1):014003. PubMed ID: 17343478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical characteristics of cartilage at a wavelength of 1560 nm and their dynamic behavior under laser heating conditions.
    Sviridov AP; Kondyurin AV
    J Biomed Opt; 2010; 15(5):055003. PubMed ID: 21054085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating sphere effect in whole-bladder-wall photodynamic therapy: II. The influence of urine at 458, 488, 514 and 630 nm optical irradiation.
    van Staveren HJ; Beek JF; Keijzer M; Star WM
    Phys Med Biol; 1995 Aug; 40(8):1307-15. PubMed ID: 7480114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling optical and thermal distributions in tissue during laser irradiation.
    Jacques SL; Prahl SA
    Lasers Surg Med; 1987; 6(6):494-503. PubMed ID: 3573921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of optical properties of neuroendocrine pancreas tumor with double-integrating-sphere system and inverse Monte Carlo model.
    Saccomandi P; Larocca ES; Rendina V; Schena E; D'Ambrosio R; Crescenzi A; Di Matteo FM; Silvestri S
    Lasers Med Sci; 2016 Aug; 31(6):1041-50. PubMed ID: 27147075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic optical property changes: implications for reflectance feedback control of photocoagulation.
    Jerath MR; Gardner CM; Rylander HG; Welch AJ
    J Photochem Photobiol B; 1992 Oct; 16(2):113-26. PubMed ID: 1474421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-fluence laser-facilitated platelet-rich plasma permeation for treating MRSA-infected wound and photoaging of the skin.
    Lee WR; Hsiao CY; Huang TH; Sung CT; Wang PW; Cheng WT; Fang JY
    Int J Pharm; 2021 Feb; 595():120242. PubMed ID: 33484919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.