These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23807181)

  • 21. Comparison of Light Penetration of Continuous Wave 810 nm and Superpulsed 904 nm Wavelength Light in Anesthetized Rats.
    Anders JJ; Wu X
    Photomed Laser Surg; 2016 Sep; 34(9):418-24. PubMed ID: 27500419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical Study of Hyper-Thermic Laser Lipolysis With 1,064 nm Nd:YAG Laser in Human Subjects.
    Milanic M; Muc BT; Lukac N; Lukac M
    Lasers Surg Med; 2019 Dec; 51(10):897-909. PubMed ID: 31228285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of porcine skin graft adherence using a light-activated process.
    Chan BP; Kochevar IE; Redmond RW
    J Surg Res; 2002 Nov; 108(1):77-84. PubMed ID: 12443718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic optical absorption characteristics of blood after slow and fast heating.
    Jia H; Chen B; Li D
    Lasers Med Sci; 2017 Apr; 32(3):513-525. PubMed ID: 28091849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity.
    Whiteside PJD; Qian C; Golda N; Hunt HK
    Lasers Surg Med; 2017 Sep; 49(7):666-674. PubMed ID: 28418076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Besides Photothermal Effects, Low-Level CO
    Shen D; Wei J; Chen L; Shen X; Wang L
    Photobiomodul Photomed Laser Surg; 2019 Mar; 37(3):151-158. PubMed ID: 31050951
    [No Abstract]   [Full Text] [Related]  

  • 28. Characterization of thermal and optical properties in porcine pancreas tissue.
    Akhter F; Manrique-Bedoya S; Moreau C; Smith AL; Feng Y; Mayer KM; Hood RL
    Lasers Surg Med; 2022 Jul; 54(5):702-715. PubMed ID: 35170764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling.
    Alexander VV; Ke K; Xu Z; Islam MN; Freeman MJ; Pitt B; Welsh MJ; Orringer JS
    Lasers Surg Med; 2011 Aug; 43(6):470-80. PubMed ID: 21761417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in relative light fluence measured during laser heating: implications for optical monitoring and modelling of interstitial laser photocoagulation.
    Chin LC; Whelan WM; Sherar MD; Vitkin IA
    Phys Med Biol; 2001 Sep; 46(9):2407-20. PubMed ID: 11580177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical properties of porcine skin dermis between 900 nm and 1500 nm.
    Du Y; Hu XH; Cariveau M; Ma X; Kalmus GW; Lu JQ
    Phys Med Biol; 2001 Jan; 46(1):167-81. PubMed ID: 11197670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Beam Spot Size in Heating Targets at Depth.
    Ross EV; Childs J
    J Drugs Dermatol; 2015 Dec; 14(12):1437-42. PubMed ID: 26659937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy.
    Ritz JP; Roggan A; Germer CT; Isbert C; Müller G; Buhr HJ
    Lasers Surg Med; 2001; 28(4):307-12. PubMed ID: 11344509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice.
    Gupta A; Dai T; Hamblin MR
    Lasers Med Sci; 2014 Jan; 29(1):257-65. PubMed ID: 23619627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser thermal therapy: utility of interstitial fluence monitoring for locating optical sensors.
    Whelan WM; Chun P; Chin LC; Sherar MD; Vitkin IA
    Phys Med Biol; 2001 Apr; 46(4):N91-6. PubMed ID: 11324974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range.
    Yaroslavsky AN; Schulze PC; Yaroslavsky IV; Schober R; Ulrich F; Schwarzmaier HJ
    Phys Med Biol; 2002 Jun; 47(12):2059-73. PubMed ID: 12118601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variations in tissue optical parameters with the incident power of an infrared laser.
    Hamdy O; Mohammed HS
    PLoS One; 2022; 17(1):e0263164. PubMed ID: 35100314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes.
    Cain CP; Polhamus GD; Roach WP; Stolarski DJ; Schuster KJ; Stockton KL; Rockwell BA; Chen B; Welch AJ
    J Biomed Opt; 2006; 11(4):041109. PubMed ID: 16965137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties.
    Hamdy O; Abdel-Salam Z; Abdel-Harith M
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36428905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of dehydration on the optical properties of in vitro porcine liver.
    Zhu D; Luo Q; Cen J
    Lasers Surg Med; 2003; 33(4):226-31. PubMed ID: 14571446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.