These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23807624)

  • 1. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots.
    Borys NJ; Shafran E; Lupton JM
    Sci Rep; 2013; 3():2090. PubMed ID: 23807624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-domain interferometry of surface plasmons at nonlinear continuum hot spots in films of silver nanoparticles.
    Klemm P; Haug T; Bange S; Lupton JM
    Phys Rev Lett; 2014 Dec; 113(26):266805. PubMed ID: 25615373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy.
    Charconnet M; Kuttner C; Plou J; García-Pomar JL; Mihi A; Liz-Marzán LM; Seifert A
    Small Methods; 2021 Oct; 5(10):e2100453. PubMed ID: 34927949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities.
    Yin Y; Wang J; Lu X; Hao Q; Saei Ghareh Naz E; Cheng C; Ma L; Schmidt OG
    ACS Nano; 2018 Apr; 12(4):3726-3732. PubMed ID: 29630816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Spatial and Spectral Localization of Surface Plasmons in Individual Randomly Disordered Gold Nanosponges.
    Zhong J; Chimeh A; Korte A; Schwarz F; Yi J; Wang D; Zhan J; Schaaf P; Runge E; Lienau C
    Nano Lett; 2018 Aug; 18(8):4957-4964. PubMed ID: 29996060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation.
    Wang X; Liu C; Gao C; Yao K; Masouleh SSM; Berté R; Ren H; Menezes LS; Cortés E; Bicket IC; Wang H; Li N; Zhang Z; Li M; Xie W; Yu Y; Fang Y; Zhang S; Xu H; Vomiero A; Liu Y; Botton GA; Maier SA; Liang H
    ACS Nano; 2021 Jun; 15(6):10553-10564. PubMed ID: 34114794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled plasmons induce broadband circular dichroism in patternable films of silver nanoparticles with chiral ligands.
    Vidal X; Kim WJ; Baev A; Tokar V; Jee H; Swihart MT; Prasad PN
    Nanoscale; 2013 Nov; 5(21):10550-5. PubMed ID: 24056891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subdiffraction limited, remote excitation of surface enhanced Raman scattering.
    Hutchison JA; Centeno SP; Odaka H; Fukumura H; Hofkens J; Uji-I H
    Nano Lett; 2009 Mar; 9(3):995-1001. PubMed ID: 19199757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods.
    Bigelow NW; Vaschillo A; Iberi V; Camden JP; Masiello DJ
    ACS Nano; 2012 Aug; 6(8):7497-504. PubMed ID: 22849410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How To Light Special Hot Spots in Multiparticle-Film Configurations.
    Chen S; Meng LY; Shan HY; Li JF; Qian L; Williams CT; Yang ZL; Tian ZQ
    ACS Nano; 2016 Jan; 10(1):581-7. PubMed ID: 26580830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.