These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 23807664)
21. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates. Reim N; Littig A; Behn D; Mews A J Am Chem Soc; 2013 Dec; 135(49):18520-7. PubMed ID: 24245969 [TBL] [Abstract][Full Text] [Related]
22. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts. Sierra-Sastre Y; Dayeh SA; Picraux ST; Batt CA ACS Nano; 2010 Feb; 4(2):1209-17. PubMed ID: 20128609 [TBL] [Abstract][Full Text] [Related]
23. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties. Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888 [TBL] [Abstract][Full Text] [Related]
24. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity. Consonni V; Sarigiannidou E; Appert E; Bocheux A; Guillemin S; Donatini F; Robin IC; Kioseoglou J; Robaut F ACS Nano; 2014 May; 8(5):4761-70. PubMed ID: 24720628 [TBL] [Abstract][Full Text] [Related]
25. The influence of the surface migration of gold on the growth of silicon nanowires. Hannon JB; Kodambaka S; Ross FM; Tromp RM Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928 [TBL] [Abstract][Full Text] [Related]
26. Fast synthesis of ultrathin ZnO nanowires by oxidation of Cu/Zn stacks in low-pressure afterglow. Altaweel A; Imam A; Ghanbaja J; Mangin D; Miska P; Gries T; Belmonte T Nanotechnology; 2017 Feb; 28(8):085602. PubMed ID: 28102178 [TBL] [Abstract][Full Text] [Related]
27. Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 degrees C. Xu C; Kim D; Chun J; Rho K; Chon B; Hong S; Joo T J Phys Chem B; 2006 Nov; 110(43):21741-6. PubMed ID: 17064134 [TBL] [Abstract][Full Text] [Related]
28. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition. Zhang XT; Liu Z; Li Q; Hark SK J Phys Chem B; 2005 Sep; 109(38):17913-6. PubMed ID: 16853298 [TBL] [Abstract][Full Text] [Related]
29. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct. Black K; Jones AC; Alexandrou I; Heys PN; Chalker PR Nanotechnology; 2010 Jan; 21(4):045701. PubMed ID: 20009167 [TBL] [Abstract][Full Text] [Related]
30. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. Wang X; Song J; Summers CJ; Ryou JH; Li P; Dupuis RD; Wang ZL J Phys Chem B; 2006 Apr; 110(15):7720-4. PubMed ID: 16610866 [TBL] [Abstract][Full Text] [Related]
32. Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature. Han X; Wang G; Jie J; Choy WC; Luo Y; Yuk TI; Hou JG J Phys Chem B; 2005 Feb; 109(7):2733-8. PubMed ID: 16851281 [TBL] [Abstract][Full Text] [Related]
33. Crystal-structure-dependent photoluminescence from InP nanowires. Mattila M; Hakkarainen T; Mulot M; Lipsanen H Nanotechnology; 2006 Mar; 17(6):1580-3. PubMed ID: 26558562 [TBL] [Abstract][Full Text] [Related]
34. Growth behaviour of well-aligned ZnO nanowires on a Si substrate at low temperature and their optical properties. Jeong JS; Lee JY; Cho JH; Lee CJ; An SJ; Yi GC; Gronsky R Nanotechnology; 2005 Oct; 16(10):2455-61. PubMed ID: 20818035 [TBL] [Abstract][Full Text] [Related]
35. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition. Chang YM; Jian SR; Lee HY; Lin CM; Juang JY Nanotechnology; 2010 Sep; 21(38):385705. PubMed ID: 20798465 [TBL] [Abstract][Full Text] [Related]
36. Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Cha SN; Song BG; Jang JE; Jung JE; Han IT; Ha JH; Hong JP; Kang DJ; Kim JM Nanotechnology; 2008 Jun; 19(23):235601. PubMed ID: 21825796 [TBL] [Abstract][Full Text] [Related]
37. Germanium-catalyzed hierarchical Al(2)O(3) and SiO(2) nanowire bunch arrays. Gu Z; Liu F; Howe JY; Parans Paranthaman M; Pan Z Nanoscale; 2009 Dec; 1(3):347-54. PubMed ID: 20648272 [TBL] [Abstract][Full Text] [Related]
38. Influence of Colloidal Au on the Growth of ZnO Nanostructures. Güell F; Cabot A; Claramunt S; Moghaddam AO; Martínez-Alanis PR Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33805496 [TBL] [Abstract][Full Text] [Related]
39. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient. Liu P; Li Y; Guo Y; Zhang Z Nanoscale Res Lett; 2012 Apr; 7(1):220. PubMed ID: 22502639 [TBL] [Abstract][Full Text] [Related]
40. Large-scale synthesis and microstructure of SnO2 nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate. Yu W; Li X; Gao X; Wu F J Phys Chem B; 2005 Sep; 109(36):17078-81. PubMed ID: 16853177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]