These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23808485)

  • 1. A conserved aromatic residue regulating photosensitivity in short-wavelength sensitive cone visual pigments.
    Kuemmel CM; Sandberg MN; Birge RR; Knox BE
    Biochemistry; 2013 Jul; 52(30):5084-91. PubMed ID: 23808485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid release of retinal from a cone visual pigment following photoactivation.
    Chen MH; Kuemmel C; Birge RR; Knox BE
    Biochemistry; 2012 May; 51(20):4117-25. PubMed ID: 22217337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of the chromophore-binding site in human cone opsins.
    Katayama K; Gulati S; Ortega JT; Alexander NS; Sun W; Shenouda MM; Palczewski K; Jastrzebska B
    J Biol Chem; 2019 Apr; 294(15):6082-6093. PubMed ID: 30770468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch.
    Ramos LS; Chen MH; Knox BE; Birge RR
    Biochemistry; 2007 May; 46(18):5330-40. PubMed ID: 17439245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of transducin by a Xenopus short wavelength visual pigment.
    Starace DM; Knox BE
    J Biol Chem; 1997 Jan; 272(2):1095-100. PubMed ID: 8995408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved residues in the extracellular loops of short-wavelength cone visual pigments.
    Chen MH; Sandberg DJ; Babu KR; Bubis J; Surya A; Ramos LS; Zapata HJ; Galan JF; Sandberg MN; Birge RR; Knox BE
    Biochemistry; 2011 Aug; 50(32):6763-73. PubMed ID: 21688771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serine 85 in transmembrane helix 2 of short-wavelength visual pigments interacts with the retinylidene Schiff base counterion.
    Dukkipati A; Vought BW; Singh D; Birge RR; Knox BE
    Biochemistry; 2001 Dec; 40(50):15098-108. PubMed ID: 11735392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.
    Srinivasan S; Fernández-Sampedro MA; Morillo M; Ramon E; Jiménez-Rosés M; Cordomí A; Garriga P
    Biophys J; 2018 Mar; 114(6):1285-1294. PubMed ID: 29590586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing human red cone opsin activity with retinal analogues.
    Kono M; Crouch RK
    J Nat Prod; 2011 Mar; 74(3):391-4. PubMed ID: 21314100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
    Takahashi Y; Ebrey TG
    Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues.
    Fukada Y; Okano T; Shichida Y; Yoshizawa T; Trehan A; Mead D; Denny M; Asato AE; Liu RS
    Biochemistry; 1990 Mar; 29(12):3133-40. PubMed ID: 2140051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing of the retinal binding site of bacteriorhodopsin by affinity labeling.
    Feng Y; Menick DR; Katz BM; Beischel CJ; Hazard ES; Misra S; Ebrey TG; Crouch RK
    Biochemistry; 1994 Sep; 33(38):11624-30. PubMed ID: 7918376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments.
    Kefalov VJ; Cornwall MC; Fain GL
    Methods Mol Biol; 2010; 652():95-114. PubMed ID: 20552424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
    Yoshizawa T; Kuwata O
    Photochem Photobiol; 1991 Dec; 54(6):1061-70. PubMed ID: 1775529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.