These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 23808714)
1. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. Golibrzuch K; Shirhatti PR; Altschäffel J; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C J Phys Chem A; 2013 Sep; 117(36):8750-60. PubMed ID: 23808714 [TBL] [Abstract][Full Text] [Related]
2. Incidence energy dependent state-to-state time-of-flight measurements of NO(v = 3) collisions with Au(111): the fate of incidence vibrational and translational energy. Golibrzuch K; Shirhatti PR; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C Phys Chem Chem Phys; 2014 Apr; 16(16):7602-10. PubMed ID: 24637916 [TBL] [Abstract][Full Text] [Related]
3. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface. Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561 [TBL] [Abstract][Full Text] [Related]
4. Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl(v=2,J=1) scattering from Au(111). Rahinov I; Cooper R; Yuan C; Yang X; Auerbach DJ; Wodtke AM J Chem Phys; 2008 Dec; 129(21):214708. PubMed ID: 19063576 [TBL] [Abstract][Full Text] [Related]
5. Observation of direct vibrational excitation in gas-surface collisions of CO with Au(111): a new model system for surface dynamics. Schäfer T; Bartels N; Golibrzuch K; Bartels C; Köckert H; Auerbach DJ; Kitsopoulos TN; Wodtke AM Phys Chem Chem Phys; 2013 Feb; 15(6):1863-7. PubMed ID: 23247407 [TBL] [Abstract][Full Text] [Related]
6. Vibrationally promoted electron emission from low work-function metal surfaces. White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM J Chem Phys; 2006 Feb; 124(6):64702. PubMed ID: 16483224 [TBL] [Abstract][Full Text] [Related]
7. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence. Shirhatti PR; Werdecker J; Golibrzuch K; Wodtke AM; Bartels C J Chem Phys; 2014 Sep; 141(12):124704. PubMed ID: 25273458 [TBL] [Abstract][Full Text] [Related]
8. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2]. Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275 [TBL] [Abstract][Full Text] [Related]
9. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702 [TBL] [Abstract][Full Text] [Related]
10. Full state-resolved energy gain profiles of CO2 (J = 2-80) from collisions of highly vibrationally excited molecules. 1. Relaxation of pyrazine (E = 37900 cm(-1)). Havey DK; Du J; Liu Q; Mullin AS J Phys Chem A; 2010 Jan; 114(3):1569-80. PubMed ID: 20000656 [TBL] [Abstract][Full Text] [Related]
11. Vibrational Relaxation of Highly Vibrationally Excited CO Scattered from Au(111): Evidence for CO Wagner RJV; Henning N; Krüger BC; Park GB; Altschäffel J; Kandratsenka A; Wodtke AM; Schäfer T J Phys Chem Lett; 2017 Oct; 8(19):4887-4892. PubMed ID: 28930463 [TBL] [Abstract][Full Text] [Related]
12. Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0→1,2,3) in collisions with Au(111). Golibrzuch K; Kandratsenka A; Rahinov I; Cooper R; Auerbach DJ; Wodtke AM; Bartels C J Phys Chem A; 2013 Aug; 117(32):7091-101. PubMed ID: 23947910 [TBL] [Abstract][Full Text] [Related]
13. Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism. LaRue JL; Schäfer T; Matsiev D; Velarde L; Nahler NH; Auerbach DJ; Wodtke AM J Phys Chem A; 2011 Dec; 115(50):14306-14. PubMed ID: 22112161 [TBL] [Abstract][Full Text] [Related]
14. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864 [TBL] [Abstract][Full Text] [Related]
15. Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32,700 and 37,900 cm(-1)) relaxation. Du J; Sassin NA; Havey DK; Hsu K; Mullin AS J Phys Chem A; 2013 Nov; 117(46):12104-15. PubMed ID: 24063656 [TBL] [Abstract][Full Text] [Related]
16. Dynamical steering and electronic excitation in NO scattering from a gold surface. Shenvi N; Roy S; Tully JC Science; 2009 Nov; 326(5954):829-32. PubMed ID: 19892977 [TBL] [Abstract][Full Text] [Related]
17. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene. Hsu HC; Tsai MT; Dyakov Y; Ni CK Phys Chem Chem Phys; 2011 May; 13(18):8313-21. PubMed ID: 21298156 [TBL] [Abstract][Full Text] [Related]
18. State-to-state dynamics at the gas-liquid metal interface: rotationally and electronically inelastic scattering of NO[2Π(1/2)(0.5)] from molten gallium. Ziemkiewicz MP; Roscioli JR; Nesbitt DJ J Chem Phys; 2011 Jun; 134(23):234703. PubMed ID: 21702572 [TBL] [Abstract][Full Text] [Related]
19. Dynamical steering in an electron transfer surface reaction: oriented NO(v = 3, 0.08 < Ei < 0.89 eV) relaxation in collisions with a Au(111) surface. Bartels N; Golibrzuch K; Bartels C; Chen L; Auerbach DJ; Wodtke AM; Schäfer T J Chem Phys; 2014 Feb; 140(5):054710. PubMed ID: 24511971 [TBL] [Abstract][Full Text] [Related]
20. Energy transfer of highly vibrationally excited biphenyl. Hsu HC; Dyakov Y; Ni CK J Chem Phys; 2010 Nov; 133(17):174315. PubMed ID: 21054040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]