These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23808750)

  • 1. Learning-induced modulations of the stimulus-preceding negativity.
    Morís J; Luque D; Rodríguez-Fornells A
    Psychophysiology; 2013 Sep; 50(9):931-9. PubMed ID: 23808750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facial, verbal, and symbolic stimuli differently affect the right hemisphere preponderance of stimulus-preceding negativity.
    Ohgami Y; Kotani Y; Arai J; Kiryu S; Inoue Y
    Psychophysiology; 2014 Sep; 51(9):843-52. PubMed ID: 24849660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus-preceding negativity is modulated by action-outcome contingency.
    Masaki H; Yamazaki K; Hackley SA
    Neuroreport; 2010 Mar; 21(4):277-81. PubMed ID: 20134356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement.
    Broyd SJ; Richards HJ; Helps SK; Chronaki G; Bamford S; Sonuga-Barke EJ
    J Neurosci Methods; 2012 Jul; 209(1):40-9. PubMed ID: 22659003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback-related negativity is enhanced in adolescence during a gambling task with and without probabilistic reinforcement learning.
    Martínez-Velázquez ES; Ramos-Loyo J; González-Garrido AA; Sequeira H
    Neuroreport; 2015 Jan; 26(2):45-9. PubMed ID: 25494471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. It was not MY fault: event-related brain potentials in active and observational learning from feedback.
    Bellebaum C; Kobza S; Thiele S; Daum I
    Cereb Cortex; 2010 Dec; 20(12):2874-83. PubMed ID: 20308202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to become an expert: reinforcement learning and the acquisition of perceptual expertise.
    Krigolson OE; Pierce LJ; Holroyd CB; Tanaka JW
    J Cogn Neurosci; 2009 Sep; 21(9):1834-41. PubMed ID: 18823237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the stimulus-preceding negativity and lateralized readiness potential during reinforcement learning.
    Ren X; Valle-Inclán F; Tukaiev S; Hackley SA
    Psychophysiology; 2017 Jul; 54(7):969-981. PubMed ID: 28383111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and slow brain rhythms in rule/expectation violation tasks: focusing on evaluation processes by excluding motor action.
    Tzur G; Berger A
    Behav Brain Res; 2009 Mar; 198(2):420-8. PubMed ID: 19100781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospect theory does not describe the feedback-related negativity value function.
    Sambrook TD; Roser M; Goslin J
    Psychophysiology; 2012 Dec; 49(12):1533-44. PubMed ID: 23094592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychophysiological evidence for impaired reward anticipation in Parkinson's disease.
    Mattox ST; Valle-Inclán F; Hackley SA
    Clin Neurophysiol; 2006 Oct; 117(10):2144-53. PubMed ID: 16920018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of the magnitude, probability, and valence of potential wins and losses on the amplitude of the feedback negativity.
    Kreussel L; Hewig J; Kretschmer N; Hecht H; Coles MG; Miltner WH
    Psychophysiology; 2012 Feb; 49(2):207-19. PubMed ID: 22091824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain potentials associated with outcome expectation and outcome evaluation.
    Yu R; Zhou X
    Neuroreport; 2006 Oct; 17(15):1649-53. PubMed ID: 17001286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The feedback correct-related positivity: sensitivity of the event-related brain potential to unexpected positive feedback.
    Holroyd CB; Pakzad-Vaezi KL; Krigolson OE
    Psychophysiology; 2008 Sep; 45(5):688-97. PubMed ID: 18513364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of failure: feedback-related negativity predicts motor learning efficiency.
    van der Helden J; Boksem MA; Blom JH
    Cereb Cortex; 2010 Jul; 20(7):1596-603. PubMed ID: 19840974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anxiety and feedback negativity.
    Gu R; Huang YX; Luo YJ
    Psychophysiology; 2010 Sep; 47(5):961-7. PubMed ID: 20374540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of learning on feedback-related brain potentials in a decision-making task.
    Sailer U; Fischmeister FP; Bauer H
    Brain Res; 2010 Jun; 1342():85-93. PubMed ID: 20423704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediofrontal negativities in the absence of responding.
    Donkers FC; Nieuwenhuis S; van Boxtel GJ
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):777-87. PubMed ID: 16249075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback information and the reward positivity.
    Cockburn J; Holroyd CB
    Int J Psychophysiol; 2018 Oct; 132(Pt B):243-251. PubMed ID: 29208491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.