These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A Mechanical Comparison of the Compressive Force Generated by Various Headless Compression Screws and the Impact of Fracture Gap Size. Ilyas AM; Mahoney JM; Bucklen BS Hand (N Y); 2021 Sep; 16(5):604-611. PubMed ID: 31565968 [No Abstract] [Full Text] [Related]
7. Effect of interfragmentary gap on compression force in a headless compression screw used for scaphoid fixation. Tan ES; Mat Jais IS; Abdul Rahim S; Tay SC J Hand Surg Eur Vol; 2018 Jan; 43(1):93-96. PubMed ID: 28382830 [TBL] [Abstract][Full Text] [Related]
8. A central threadless shaft screw is better than a fully threaded variable pitch screw for unstable scaphoid nonunion: a biomechanical study. Koh IH; Kang HJ; Kim JS; Park SJ; Choi YR Injury; 2015 Apr; 46(4):638-42. PubMed ID: 25666203 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical comparison of two headless compression screws for scaphoid fixation. Pensy RA; Richards AM; Belkoff SM; Mentzer K; Andrew Eglseder W J Surg Orthop Adv; 2009; 18(4):182-8. PubMed ID: 19995497 [TBL] [Abstract][Full Text] [Related]
10. The durability of the intrascaphoid compression of headless compression screws: in vitro study. Gruszka DS; Burkhart KJ; Nowak TE; Achenbach T; Rommens PM; Müller LP J Hand Surg Am; 2012 Jun; 37(6):1142-50. PubMed ID: 22624783 [TBL] [Abstract][Full Text] [Related]
11. Interfragmentary compression across a simulated scaphoid fracture--analysis of 3 screws. Beadel GP; Ferreira L; Johnson JA; King GJ J Hand Surg Am; 2004 Mar; 29(2):273-8. PubMed ID: 15043901 [TBL] [Abstract][Full Text] [Related]
12. A biomechanical study on variation of compressive force along the Acutrak 2 screw. Sugathan HK; Kilpatrick M; Joyce TJ; Harrison JW Injury; 2012 Feb; 43(2):205-8. PubMed ID: 21839443 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the effect of drilling depth on generation of compressive force by headless compression screws using conical and cylindrical type of drill bit. Kim HS; Kang HJ; Choi YR; Oh WT; Koh IH J Orthop Surg Res; 2019 Jan; 14(1):5. PubMed ID: 30609926 [TBL] [Abstract][Full Text] [Related]
14. Interfragmentary compression profile of 4 headless bone screws: an analysis of the compression lost on reinsertion. Gardner AW; Yew YT; Neo PY; Lau CC; Tay SC J Hand Surg Am; 2012 Sep; 37(9):1845-51. PubMed ID: 22854254 [TBL] [Abstract][Full Text] [Related]
15. A biomechanical comparison of equine third metacarpal condylar bone fragment compression and screw pushout strength between headless tapered variable pitch and AO cortical bone screws. Galuppo LD; Stover SM; Jensen DG Vet Surg; 2002; 31(3):201-10. PubMed ID: 11994847 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical evaluation of a new composite bioresorbable screw. Bailey CA; Kuiper JH; Kelly CP J Hand Surg Br; 2006 Apr; 31(2):208-12. PubMed ID: 16361004 [TBL] [Abstract][Full Text] [Related]
17. Comparison of fixation methods for scaphoid nonunions: a biomechanical model. Panchal A; Kubiak EN; Keshner M; Fulkerson E; Paksima N Bull NYU Hosp Jt Dis; 2007; 65(4):271-5. PubMed ID: 18081547 [TBL] [Abstract][Full Text] [Related]
18. Interfragmentary compression forces of scaphoid screws in a sawbone cylinder model. Hausmann JT; Mayr W; Unger E; Benesch T; Vécsei V; Gäbler C Injury; 2007 Jul; 38(7):763-8. PubMed ID: 17270187 [TBL] [Abstract][Full Text] [Related]
19. Compression forces generated by Mini bone screws--a comparative study done on bone model. Adla DN; Kitsis C; Miles AW Injury; 2005 Jan; 36(1):65-70. PubMed ID: 15589916 [TBL] [Abstract][Full Text] [Related]