These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2380987)

  • 1. Complexes of RecA protein in solution. A study by small angle neutron scattering.
    DiCapua E; Schnarr M; Ruigrok RW; Lindner P; Timmins PA
    J Mol Biol; 1990 Jul; 214(2):557-70. PubMed ID: 2380987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of recA protein: the salt-induced structural transition.
    DiCapua E; Ruigrok RW; Timmins PA
    J Struct Biol; 1990; 104(1-3):91-6. PubMed ID: 2150915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The location of DNA in complexes of recA protein with double-stranded DNA. A neutron scattering study.
    DiCapua E; Schnarr M; Timmins PA
    Biochemistry; 1989 Apr; 28(8):3287-92. PubMed ID: 2663069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for elongation of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering.
    Ellouze C; Takahashi M; Wittung P; Mortensen K; Schnarr M; Nordén B
    Eur J Biochem; 1995 Oct; 233(2):579-83. PubMed ID: 7588804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of RecA-DNA complexes studied by combination of linear dichroism and small-angle neutron scattering measurements on flow-oriented samples.
    Nordén B; Elvingson C; Kubista M; Sjöberg B; Ryberg H; Ryberg M; Mortensen K; Takahashi M
    J Mol Biol; 1992 Aug; 226(4):1175-91. PubMed ID: 1518050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide cofactor-dependent structural change of Xenopus laevis Rad51 protein filament detected by small-angle neutron scattering measurements in solution.
    Ellouze C; Kim HK; Maeshima K; Tuite E; Morimatsu K; Horii T; Mortensen K; Nordén B; Takahashi M
    Biochemistry; 1997 Nov; 36(44):13524-9. PubMed ID: 9354620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a RecA-DNA complex from linear dichroism and small-angle neutron-scattering in flow-oriented solution.
    Nordén B; Elvingson C; Eriksson T; Kubista M; Sjöberg B; Takahashi M; Mortensen K
    J Mol Biol; 1990 Nov; 216(2):223-8. PubMed ID: 2254923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP.
    Egelman EH; Stasiak A
    J Mol Biol; 1986 Oct; 191(4):677-97. PubMed ID: 2949085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy.
    Heuser J; Griffith J
    J Mol Biol; 1989 Dec; 210(3):473-84. PubMed ID: 2693735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical model for determination of parameters of helical structures in solution by small angle scattering: comparison of RecA structures by SANS.
    Lebedev DV; Baitin DM; Islamov AKh; Kuklin AI; Shalguev VKh; Lanzov VA; Isaev-Ivanov VV
    FEBS Lett; 2003 Feb; 537(1-3):182-6. PubMed ID: 12606054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solution structure of recA filaments by small angle neutron scattering.
    Timmins PA; Ruigrok RW; DiCapua E
    Biochimie; 1991; 73(2-3):227-30. PubMed ID: 1883884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible.
    Yu X; Egelman EH
    J Mol Biol; 1992 Sep; 227(1):334-46. PubMed ID: 1522597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two mutant RecA proteins possessing pH-dependent strand exchange activity exhibit pH-dependent presynaptic filament formation.
    Pinsince JM; Muench KA; Bryant FR; Griffith JD
    J Mol Biol; 1993 Sep; 233(1):59-66. PubMed ID: 8377192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of helical RecA-DNA complexes. II. Local conformational changes visualized in bundles of RecA-ATP gamma S filaments.
    Egelman EH; Stasiak A
    J Mol Biol; 1988 Mar; 200(2):329-49. PubMed ID: 3373533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the DNA binding activity of stable RecA-DNA complexes. Interaction between the two DNA binding sites within RecA helical filaments.
    Müller B; Koller T; Stasiak A
    J Mol Biol; 1990 Mar; 212(1):97-112. PubMed ID: 2319601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA dynamics in RecA-DNA filaments: ATP hydrolysis-related flexibility in DNA.
    Ramreddy T; Sen S; Rao BJ; Krishnamoorthy G
    Biochemistry; 2003 Oct; 42(41):12085-94. PubMed ID: 14556640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The helicity of DNA in complexes with recA protein.
    Stasiak A; Di Capua E
    Nature; 1982 Sep; 299(5879):185-6. PubMed ID: 7050731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inactive form of recA protein: the 'compact' structure.
    Ruigrok RW; Bohrmann B; Hewat E; Engel A; Kellenberger E; DiCapua E
    EMBO J; 1993 Jan; 12(1):9-16. PubMed ID: 8428597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently.
    Yang S; VanLoock MS; Yu X; Egelman EH
    J Mol Biol; 2001 Oct; 312(5):999-1009. PubMed ID: 11580245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the polymerization state of recA in the absence of DNA.
    Ruigrok RW; DiCapua E
    Biochimie; 1991; 73(2-3):191-8. PubMed ID: 1883881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.