These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23810380)

  • 1. miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models.
    Cheng PH; Li CL; Chang YF; Tsai SJ; Lai YY; Chan AW; Chen CM; Yang SH
    Am J Hum Genet; 2013 Aug; 93(2):306-12. PubMed ID: 23810380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses.
    Fu MH; Li CL; Lin HL; Tsai SJ; Lai YY; Chang YF; Cheng PH; Chen CM; Yang SH
    PLoS One; 2015; 10(9):e0137637. PubMed ID: 26376480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-196a Enhances Neuronal Morphology through Suppressing RANBP10 to Provide Neuroprotection in Huntington's Disease.
    Her LS; Mao SH; Chang CY; Cheng PH; Chang YF; Yang HI; Chen CM; Yang SH
    Theranostics; 2017; 7(9):2452-2462. PubMed ID: 28744327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington's Disease Monkey Neural Cells.
    Kunkanjanawan T; Carter RL; Prucha MS; Yang J; Parnpai R; Chan AW
    PLoS One; 2016; 11(9):e0162788. PubMed ID: 27631085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis.
    Hoss AG; Kartha VK; Dong X; Latourelle JC; Dumitriu A; Hadzi TC; Macdonald ME; Gusella JF; Akbarian S; Chen JF; Weng Z; Myers RH
    PLoS Genet; 2014 Feb; 10(2):e1004188. PubMed ID: 24586208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin.
    Jin J; Cheng Y; Zhang Y; Wood W; Peng Q; Hutchison E; Mattson MP; Becker KG; Duan W
    J Neurochem; 2012 Nov; 123(4):477-90. PubMed ID: 22906125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease.
    Chan SC; Tung CW; Lin CW; Tung YS; Wu PM; Cheng PH; Chen CM; Yang SH
    Free Radic Biol Med; 2023 Nov; 209(Pt 2):292-300. PubMed ID: 37907121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significantly differential diffusion of neuropathological aggregates in the brain of transgenic mice carrying N-terminal mutant huntingtin fused with green fluorescent protein.
    Cheng PH; Li CL; Her LS; Chang YF; Chan AW; Chen CM; Yang SH
    Brain Struct Funct; 2013 Jan; 218(1):283-94. PubMed ID: 22422149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease.
    Wang CE; Tydlacka S; Orr AL; Yang SH; Graham RK; Hayden MR; Li S; Chan AW; Li XJ
    Hum Mol Genet; 2008 Sep; 17(17):2738-51. PubMed ID: 18558632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement.
    Hoss AG; Labadorf A; Latourelle JC; Kartha VK; Hadzi TC; Gusella JF; MacDonald ME; Chen JF; Akbarian S; Weng Z; Vonsattel JP; Myers RH
    BMC Med Genomics; 2015 Mar; 8():10. PubMed ID: 25889241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming Huntington monkey skin cells into pluripotent stem cells.
    Chan AW; Cheng PH; Neumann A; Yang JJ
    Cell Reprogram; 2010 Oct; 12(5):509-17. PubMed ID: 20936902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progerin-Induced Transcriptional Changes in Huntington's Disease Human Pluripotent Stem Cell-Derived Neurons.
    Cohen-Carmon D; Sorek M; Lerner V; Divya MS; Nissim-Rafinia M; Yarom Y; Meshorer E
    Mol Neurobiol; 2020 Mar; 57(3):1768-1777. PubMed ID: 31834602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered microRNA regulation in Huntington's disease models.
    Lee ST; Chu K; Im WS; Yoon HJ; Im JY; Park JE; Park KH; Jung KH; Lee SK; Kim M; Roh JK
    Exp Neurol; 2011 Jan; 227(1):172-9. PubMed ID: 21035445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models.
    Schilling G; Klevytska A; Tebbenkamp AT; Juenemann K; Cooper J; Gonzales V; Slunt H; Poirer M; Ross CA; Borchelt DR
    J Neuropathol Exp Neurol; 2007 Apr; 66(4):313-20. PubMed ID: 17413322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms.
    Jovicic A; Zaldivar Jolissaint JF; Moser R; Silva Santos Mde F; Luthi-Carter R
    PLoS One; 2013; 8(1):e54222. PubMed ID: 23349832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of deletion of mutant huntingtin in steroidogenic factor 1 neurons on the psychiatric and metabolic phenotype in the BACHD mouse model of Huntington disease.
    Baldo B; Cheong RY; Petersén Å
    PLoS One; 2014; 9(10):e107691. PubMed ID: 25271967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.
    Bucha S; Mukhopadhyay D; Bhattacharyya NP
    Biochem Biophys Res Commun; 2015 Oct; 465(4):797-802. PubMed ID: 26307536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease.
    Dai Y; Dudek NL; Li Q; Fowler SC; Muma NA
    J Neurosci; 2009 Sep; 29(37):11550-9. PubMed ID: 19759302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.