These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23810385)

  • 61. A new strategy for development of transducers for middle ear implants.
    Urquiza R; López-García J
    Acta Otolaryngol; 2015 Feb; 135(2):135-9. PubMed ID: 25435162
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An Electrochemical, Low-Frequency Seismic Micro-Sensor Based on MEMS with a Force-Balanced Feedback System.
    Li G; Wang J; Chen D; Chen J; Chen L; Xu C
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902150
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach.
    Dwivedi A; Khanna G
    Biomed Tech (Berl); 2020 Jul; ():. PubMed ID: 32621727
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Equivalent Lever Principle of Ossicular Chain and Amplitude Reduction Effect of Internal Ear Lymph].
    Zhao X; Qin R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):326-9. PubMed ID: 26211249
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems.
    Udvardi P; Radó J; Straszner A; Ferencz J; Hajnal Z; Soleimani S; Schneider M; Schmid U; Révész P; Volk J
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400501
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design and Modeling of a MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications.
    Peña-García NN; Aguilera-Cortés LA; González-Palacios MA; Raskin JP; Herrera-May AL
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347743
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The partially implantable middle ear implant, case reports.
    Suzuki J; Yanagihara N; Kadera K
    Adv Otorhinolaryngol; 1987; 37():178-84. PubMed ID: 3673814
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 2.4 ng/√Hz low-noise fiber-optic MEMS seismic accelerometer.
    Qu Z; Ouyang H; Liu H; Hu C; Tu LC; Zhou Z
    Opt Lett; 2022 Feb; 47(3):718-721. PubMed ID: 35103716
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design of a Novel Medical Acoustic Sensor Based on MEMS Bionic Fish Ear Structure.
    Zhou C; Zang J; Xue C; Ma Y; Hua X; Gao R; Zhang Z; Li B; Zhang Z
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208288
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The human ossicular ligaments.
    WOLFF D; BELLUCCI RJ
    Ann Otol Rhinol Laryngol; 1956 Dec; 65(4):895-910. PubMed ID: 13403545
    [No Abstract]   [Full Text] [Related]  

  • 71. A Low-Noise DC seismic accelerometer based on a combination of MET/MEMS sensors.
    Neeshpapa A; Antonov A; Agafonov V
    Sensors (Basel); 2014 Dec; 15(1):365-81. PubMed ID: 25549175
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Flexible Sensing Unit Manufacturing Method of Electrochemical Seismic Sensor.
    Li G; Sun Z; Wang J; Chen D; Chen J; Chen L; Xu C; Qi W; Zheng Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29641455
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The embedding of ossicular chain specimens in plastic.
    Ogura Y; Masuda Y; Saito R
    Auris Nasus Larynx; 1978; 5(2):77-81. PubMed ID: 87187
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Monolithic Electrochemical Micro Seismic Sensor Capable of Monitoring Three-Dimensional Vibrations.
    Chen L; Sun Z; Li G; Chen D; Wang J; Chen J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29614720
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.
    Li G; Wu SC; Zhou ZB; Bai YZ; Hu M; Luo J
    Rev Sci Instrum; 2013 Dec; 84(12):125004. PubMed ID: 24387459
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Note: A novel piezoelectrically driven pipette using centrifugal force.
    Deng ZS; Ma YT; Feng ZH
    Rev Sci Instrum; 2014 May; 85(5):056106. PubMed ID: 24880431
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pressure calibration of a digital microelectromechanical system microphone by comparison.
    Prato A; Montali N; Guglielmone C; Schiavi A
    J Acoust Soc Am; 2018 Oct; 144(4):EL297. PubMed ID: 30404493
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology.
    Orłowska K; Świątkowski M; Kunicki P; Kopiec D; Gotszalk T
    Appl Opt; 2016 Aug; 55(22):5960-6. PubMed ID: 27505377
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer.
    Yin Y; Sun B; Han F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213376
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Huddle test measurement of a near Johnson noise limited geophone.
    Kirchhoff R; Mow-Lowry CM; Adya VB; Bergmann G; Cooper S; Hanke MM; Koch P; Köhlenbeck SM; Lehmann J; Oppermann P; Wöhler J; Wu DS; Lück H; Strain KA
    Rev Sci Instrum; 2017 Nov; 88(11):115008. PubMed ID: 29195374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.