BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23810493)

  • 1. The two-component system CBO2306/CBO2307 is important for cold adaptation of Clostridium botulinum ATCC 3502.
    Derman Y; Isokallio M; Lindström M; Korkeala H
    Int J Food Microbiol; 2013 Oct; 167(1):87-91. PubMed ID: 23810493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional csdA is needed for effective adaptation and initiation of growth of Clostridium botulinum ATCC 3502 at suboptimal temperature.
    Söderholm H; Derman Y; Lindström M; Korkeala H
    Int J Food Microbiol; 2015 Sep; 208():51-7. PubMed ID: 26057109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cspB encodes a major cold shock protein in Clostridium botulinum ATCC 3502.
    Söderholm H; Lindström M; Somervuo P; Heap J; Minton N; Lindén J; Korkeala H
    Int J Food Microbiol; 2011 Mar; 146(1):23-30. PubMed ID: 21367479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CLO3403/CLO3404 two-component system of Clostridium botulinum E1 Beluga is important for cold shock response and growth at low temperatures.
    Mascher G; Derman Y; Kirk DG; Palonen E; Lindström M; Korkeala H
    Appl Environ Microbiol; 2014 Jan; 80(1):399-407. PubMed ID: 24185852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.
    Dahlsten E; Isokallio M; Somervuo P; Lindström M; Korkeala H
    PLoS One; 2014; 9(2):e89958. PubMed ID: 24587151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cold-induced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in group I Clostridium botulinum ATCC 3502 cold tolerance.
    Dahlsten E; Zhang Z; Somervuo P; Minton NP; Lindström M; Korkeala H
    Appl Environ Microbiol; 2014 Jan; 80(1):306-19. PubMed ID: 24162575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of two-component system CBO0366/CBO0365 in the cold shock response and growth of group I (proteolytic) Clostridium botulinum ATCC 3502 at low temperatures.
    Lindström M; Dahlsten E; Söderholm H; Selby K; Somervuo P; Heap JT; Minton NP; Korkeala H
    Appl Environ Microbiol; 2012 Aug; 78(15):5466-70. PubMed ID: 22660717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502.
    Derman Y; Söderholm H; Lindström M; Korkeala H
    Food Microbiol; 2015 Apr; 46():463-470. PubMed ID: 25475316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridium botulinum strain ATCC 3502.
    Selby K; Lindström M; Somervuo P; Heap JT; Minton NP; Korkeala H
    Appl Environ Microbiol; 2011 May; 77(9):2823-30. PubMed ID: 21378058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Anaerobe; 2015 Aug; 34():86-93. PubMed ID: 25937262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-component systems and toxinogenesis regulation in Clostridium botulinum.
    Connan C; Popoff MR
    Res Microbiol; 2015 May; 166(4):332-43. PubMed ID: 25592073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum.
    Dahlsten E; Lindström M; Korkeala H
    Res Microbiol; 2015 May; 166(4):344-52. PubMed ID: 25303833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation.
    Kirk DG; Dahlsten E; Zhang Z; Korkeala H; Lindström M
    Appl Environ Microbiol; 2012 Jul; 78(13):4590-6. PubMed ID: 22544236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.
    Selby K; Mascher G; Somervuo P; Lindström M; Korkeala H
    PLoS One; 2017; 12(5):e0176944. PubMed ID: 28464023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures.
    Pöntinen A; Markkula A; Lindström M; Korkeala H
    Appl Environ Microbiol; 2015 Jun; 81(12):3994-4004. PubMed ID: 25841007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.
    Fredrick CM; Lin G; Johnson EA
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative sigma factor SigK has a role in stress tolerance of group I Clostridium botulinum strain ATCC 3502.
    Dahlsten E; Kirk D; Lindström M; Korkeala H
    Appl Environ Microbiol; 2013 Jun; 79(12):3867-9. PubMed ID: 23563953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of normalization reference genes for RT-qPCR analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502.
    Kirk DG; Palonen E; Korkeala H; Lindström M
    Anaerobe; 2014 Apr; 26():14-9. PubMed ID: 24389585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.
    Connan C; Denève C; Mazuet C; Popoff MR
    Toxicon; 2013 Dec; 75():90-100. PubMed ID: 23769754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth.
    Bresolin G; Neuhaus K; Scherer S; Fuchs TM
    J Bacteriol; 2006 Apr; 188(8):2945-58. PubMed ID: 16585756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.