These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23810901)

  • 21. Lunar and temperature effects on activity of free-living desert hamsters (Phodopus roborovskii, Satunin 1903).
    Scheibler E; Roschlau C; Brodbeck D
    Int J Biometeorol; 2014 Oct; 58(8):1769-78. PubMed ID: 24408344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus).
    Ruf T; Stieglitz A; Steinlechner S; Blank JL; Heldmaier G
    J Exp Zool; 1993 Oct; 267(2):104-12. PubMed ID: 8409896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interspecific contact affects phase response and activity in Desert hamsters.
    Scheibler E; Wollnik F
    Physiol Behav; 2009 Sep; 98(3):288-95. PubMed ID: 19524601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Daily torpor affects the molecular machinery of the circadian clock in Djungarian hamsters (Phodopus sungorus).
    Herwig A; Saboureau M; Pevet P; Steinlechner S
    Eur J Neurosci; 2007 Nov; 26(10):2739-46. PubMed ID: 18001271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoperiodic regulation of circulating leukocytes in juvenile Siberian hamsters: mediation by melatonin and testosterone.
    Prendergast BJ; Hotchkiss AK; Nelson RJ
    J Biol Rhythms; 2003 Dec; 18(6):473-80. PubMed ID: 14667148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A comparative study of the osmoregulating system in the hamsters Phodopus roborovskii and Phodopus sungorus].
    Natochin IuV; Meshcherskiĭ IG; Goncharevskaia OA; Makarenko IG; Shakhmatova EI; Ugriumov MV; Feoktistova NIu; Alonso G
    Zh Evol Biokhim Fiziol; 1994; 30(3):344-57. PubMed ID: 7810260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Twenty-four-hour profiles of serum leptin in siberian and golden hamsters: photoperiodic and diurnal variations.
    Horton TH; Buxton OM; Losee-Olson S; Turek FW
    Horm Behav; 2000 Jun; 37(4):388-98. PubMed ID: 10860682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Daily variations in the influence of noradrenaline on preferred ambient temperature of the Siberian hamster.
    Jefimow M; Wojciechowski M; Tegowska E
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Apr; 134(4):717-26. PubMed ID: 12814780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oestrus cycle of the Desert hamster (Phodopus roborovskii, Satunin, 1903).
    Scheibler E; Wollnik F
    Lab Anim; 2013 Oct; 47(4):301-11. PubMed ID: 23760567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early photoperiod history and short-day responsiveness in Siberian hamsters.
    Goldman SL; Goldman BD
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):38-45. PubMed ID: 12589689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Entrainment of circadian rhythm by ambient temperature cycles in mice.
    Refinetti R
    J Biol Rhythms; 2010 Aug; 25(4):247-56. PubMed ID: 20679494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric control of short day response in European hamsters.
    Monecke S; Malan A; Wollnik F
    J Biol Rhythms; 2006 Aug; 21(4):290-300. PubMed ID: 16864649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal control of spermatogenesis is independent of the central circadian pacemaker in Djungarian hamsters (Phodopus sungorus).
    Klose M; Grote K; Lerchl A
    Biol Reprod; 2011 Jan; 84(1):124-9. PubMed ID: 20826727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The first finding of a spontaneous gastric cryptosporidiosis infection in hamsters (Phodopus roborovskii Satunin, 1903)].
    Pavlásek I; Lávicka M
    Vet Med (Praha); 1995 Aug; 40(8):261-3. PubMed ID: 8585141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The thalamic intergeniculate leaflet modulates photoperiod responsiveness in Siberian hamsters.
    Freeman DA; Dhandapani KM; Goldman BD
    Brain Res; 2004 Nov; 1028(1):31-8. PubMed ID: 15518639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early life experiences affect adult delayed-type hypersensitivity in short and long photoperiods.
    Fonken LK; Morris JS; Nelson RJ
    Chronobiol Int; 2011 Mar; 28(2):101-8. PubMed ID: 21231871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoperiod and stress regulation of corticosteroid receptor, brain-derived neurotrophic factor, and glucose transporter GLUT3 mRNA in the hippocampus of male Siberian hamsters (Phodopus sungorus).
    Walton JC; Grier AJ; Weil ZM; Nelson RJ
    Neuroscience; 2012 Jun; 213():106-11. PubMed ID: 22521589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of abiotic factors on cathemeral activity: the case of Eulemur fulvus collaris in the littoral forest of Madagascar.
    Donati G; Borgognini-Tarli SM
    Folia Primatol (Basel); 2006; 77(1-2):104-22. PubMed ID: 16415580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feeding schedule controls circadian timing of daily torpor in SCN-ablated Siberian hamsters.
    Paul MJ; Kauffman AS; Zucker I
    J Biol Rhythms; 2004 Jun; 19(3):226-37. PubMed ID: 15155009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian rhythms accelerate wound healing in female Siberian hamsters.
    Cable EJ; Onishi KG; Prendergast BJ
    Physiol Behav; 2017 Mar; 171():165-174. PubMed ID: 27998755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.