These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 23811181)
1. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Chang EW; Cheng JT; Röösli C; Kobler JB; Rosowski JJ; Yun SH Hear Res; 2013 Oct; 304():49-56. PubMed ID: 23811181 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry. Subhash HM; Nguyen-Huynh A; Wang RK; Jacques SL; Choudhury N; Nuttall AL J Biomed Opt; 2012 Jun; 17(6):060505. PubMed ID: 22734728 [TBL] [Abstract][Full Text] [Related]
3. Assessment of middle ear structure and function with optical coherence tomography. Meenderink SWF; Warn M; Anchondo LM; Liu Y; Jung TTK; Dong W Acta Otolaryngol; 2023; 143(7):558-562. PubMed ID: 37366291 [TBL] [Abstract][Full Text] [Related]
4. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement. Thornton JL; Chevallier KM; Koka K; Gabbard SA; Tollin DJ J Assoc Res Otolaryngol; 2013 Aug; 14(4):451-64. PubMed ID: 23615802 [TBL] [Abstract][Full Text] [Related]
5. A method to measure sound transmission via the malleus-incus complex. Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362 [TBL] [Abstract][Full Text] [Related]
6. Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography. Ramier A; Cheng JT; Ravicz ME; Rosowski JJ; Yun SH Biomed Opt Express; 2018 Nov; 9(11):5489-5502. PubMed ID: 30460142 [TBL] [Abstract][Full Text] [Related]
7. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Kozin ED; Black NL; Cheng JT; Cotler MJ; McKenna MJ; Lee DJ; Lewis JA; Rosowski JJ; Remenschneider AK Hear Res; 2016 Oct; 340():191-203. PubMed ID: 26994661 [TBL] [Abstract][Full Text] [Related]
8. Optical coherence tomographic measurements of the sound-induced motion of the ossicular chain in chinchillas: Additional modes of ossicular motion enhance the mechanical response of the chinchilla middle ear at higher frequencies. Rosowski JJ; Ramier A; Cheng JT; Yun SH Hear Res; 2020 Oct; 396():108056. PubMed ID: 32836020 [TBL] [Abstract][Full Text] [Related]
9. Human middle ear transfer function measured by double laser interferometry system. Gan RZ; Wood MW; Dormer KJ Otol Neurotol; 2004 Jul; 25(4):423-35. PubMed ID: 15241216 [TBL] [Abstract][Full Text] [Related]
10. Structures that contribute to middle-ear admittance in chinchilla. Rosowski JJ; Ravicz ME; Songer JE J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1287-311. PubMed ID: 16944166 [TBL] [Abstract][Full Text] [Related]
11. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission. Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347 [TBL] [Abstract][Full Text] [Related]
12. Sound transmission along the ossicular chain in common wild-type laboratory mice. Dong W; Varavva P; Olson ES Hear Res; 2013 Jul; 301():27-34. PubMed ID: 23183032 [TBL] [Abstract][Full Text] [Related]
13. Topography of vibration frequency responses on the bony tympano-periotic complex of the pilot whale Globicephala macrorhynchus. Tsur I; Shaviv N; Bronstein I; Elmakis D; Knafo O; Werner YL Hear Res; 2019 Dec; 384():107810. PubMed ID: 31726328 [TBL] [Abstract][Full Text] [Related]
14. Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon. Gummer AW; Smolders JW; Klinke R Hear Res; 1989 May; 39(1-2):1-13. PubMed ID: 2737958 [TBL] [Abstract][Full Text] [Related]
15. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator. Maier H; Salcher R; Schwab B; Lenarz T Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731 [TBL] [Abstract][Full Text] [Related]
16. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure. Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531 [TBL] [Abstract][Full Text] [Related]
17. Intraoperative assessment of ossicular fixation. Peacock J; Dirckx J; von Unge M Hear Res; 2016 Oct; 340():99-106. PubMed ID: 27034152 [TBL] [Abstract][Full Text] [Related]
19. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations. Merchant GR; Merchant SN; Rosowski JJ; Nakajima HH Hear Res; 2016 Nov; 341():19-30. PubMed ID: 27496538 [TBL] [Abstract][Full Text] [Related]
20. Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. Ruggero MA; Rich NC; Robles L; Shivapuja BG J Acoust Soc Am; 1990 Apr; 87(4):1612-29. PubMed ID: 2341666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]