These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23811209)

  • 21. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis.
    Barbau-Piednoir E; Mahillon J; Pillyser J; Coucke W; Roosens NH; Botteldoorn N
    J Microbiol Methods; 2014 Aug; 103():131-7. PubMed ID: 24927988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus.
    Sugimoto S; Sato F; Miyakawa R; Chiba A; Onodera S; Hori S; Mizunoe Y
    Sci Rep; 2018 Feb; 8(1):2254. PubMed ID: 29396526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of PCR amplicon length on suppressing signals from membrane-compromised cells by propidium monoazide treatment.
    Contreras PJ; Urrutia H; Sossa K; Nocker A
    J Microbiol Methods; 2011 Oct; 87(1):89-95. PubMed ID: 21821068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of viable Salmonella in lettuce by propidium monoazide real-time PCR.
    Liang N; Dong J; Luo L; Li Y
    J Food Sci; 2011 May; 76(4):M234-7. PubMed ID: 22417362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinction between intact and antibiotic-inactivated bacteria by real-time PCR after treatment with propidium monoazide.
    Kobayashi H; Oethinger M; Tuohy MJ; Hall GS; Bauer TW
    J Orthop Res; 2010 Sep; 28(9):1245-51. PubMed ID: 20186836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of propidium monoazide for live/dead distinction in microbial ecology.
    Nocker A; Sossa-Fernandez P; Burr MD; Camper AK
    Appl Environ Microbiol; 2007 Aug; 73(16):5111-7. PubMed ID: 17586667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofilm-Forming Ability and Effect of Sanitation Agents on Biofilm-Control of Thermophile
    Kİlİc T
    Pol J Microbiol; 2020 Dec; 69(4):411-419. PubMed ID: 33574869
    [No Abstract]   [Full Text] [Related]  

  • 28. Polymerase chain reaction amplification length-dependent ethidium monoazide suppression power for heat-killed cells of Enterobacteriaceae.
    Soejima T; Schlitt-Dittrich F; Yoshida S
    Anal Biochem; 2011 Nov; 418(1):37-43. PubMed ID: 21771573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms.
    Tetz VV; Tetz GV
    DNA Cell Biol; 2010 Aug; 29(8):399-405. PubMed ID: 20491577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsuitable distinction between viable and dead Staphylococcus aureus and Staphylococcus epidermidis by ethidium bromide monoazide.
    Kobayashi H; Oethinger M; Tuohy MJ; Hall GS; Bauer TW
    Lett Appl Microbiol; 2009 May; 48(5):633-8. PubMed ID: 19416465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process.
    Farkas A; Butiuc-Keul A; Ciatarâş D; Neamţu C; Crăciunaş C; Podar D; Drăgan-Bularda M
    Sci Total Environ; 2013 Jan; 443():932-8. PubMed ID: 23247295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide.
    Nocker A; Camper AK
    Appl Environ Microbiol; 2006 Mar; 72(3):1997-2004. PubMed ID: 16517648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide.
    Pisz JM; Lawrence JR; Schafer AN; Siciliano SD
    J Microbiol Methods; 2007 Dec; 71(3):312-8. PubMed ID: 17963903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.
    Emtiazi F; Schwartz T; Marten SM; Krolla-Sidenstein P; Obst U
    Water Res; 2004 Mar; 38(5):1197-206. PubMed ID: 14975653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.
    Kahlisch L; Henne K; Gröbe L; Brettar I; Höfle MG
    Microb Ecol; 2012 Feb; 63(2):383-97. PubMed ID: 21845446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An advanced PCR method for the specific detection of viable total coliform bacteria in pasteurized milk.
    Soejima T; Minami J; Yaeshima T; Iwatsuki K
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):485-97. PubMed ID: 22644523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Culture-independent techniques applied to food industry water surveillance--a case study.
    Villarreal JV; Schwartz T; Obst U
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S147-55. PubMed ID: 20363042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination between live and dead cellsin bacterial communities from environmental water samples analyzed by 454 pyrosequencing.
    Nocker A; Richter-Heitmann T; Montijn R; Schuren F; Kort R
    Int Microbiol; 2010 Jun; 13(2):59-65. PubMed ID: 20890840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Method to detect only viable cells in microbial ecology.
    Luo JF; Lin WT; Guo Y
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):377-84. PubMed ID: 20024544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 16S rDNA-based identification of bacteria from conjunctival swabs by PCR and DGGE fingerprinting.
    Schabereiter-Gurtner C; Maca S; Rölleke S; Nigl K; Lukas J; Hirschl A; Lubitz W; Barisani-Asenbauer T
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1164-71. PubMed ID: 11328723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.