BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 23811278)

  • 1. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of site-specific biomechanical properties of human meniscus-Importance of collagen and fluid on mechanical nonlinearities.
    Danso EK; Mäkelä JT; Tanska P; Mononen ME; Honkanen JT; Jurvelin JS; Töyräs J; Julkunen P; Korhonen RK
    J Biomech; 2015 Jun; 48(8):1499-507. PubMed ID: 25708321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time dependent properties of bovine meniscal attachments: stress relaxation and creep.
    Maes JA; Haut Donahue TL
    J Biomech; 2006; 39(16):3055-61. PubMed ID: 16360161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies variation of compressive biomechanical properties of the meniscus.
    Joshi MD; Suh JK; Marui T; Woo SL
    J Biomed Mater Res; 1995 Jul; 29(7):823-8. PubMed ID: 7593020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Wharton׳s jelly poroelastic parameters through compressive tests on placental and foetal ends of human umbilical cords.
    Gervaso F; Boschetti F; Pennati G
    J Mech Behav Biomed Mater; 2014 Jul; 35():51-8. PubMed ID: 24743056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods.
    Yao J; Funkenbusch PD; Snibbe J; Maloney M; Lerner AL
    J Biomech Eng; 2006 Jun; 128(3):399-408. PubMed ID: 16706589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of bovine nasal cartilage under static and dynamic loading.
    Colombo V; Cadová M; Gallo LM
    J Biomech; 2013 Sep; 46(13):2137-44. PubMed ID: 23915577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.
    Seyfi B; Fatouraee N; Imeni M
    J Mech Behav Biomed Mater; 2018 Jan; 77():337-346. PubMed ID: 28965040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive stress-relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory.
    Cohen B; Chorney GS; Phillips DP; Dick HM; Mow VC
    J Orthop Res; 1994 Nov; 12(6):804-13. PubMed ID: 7983556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of matrix stabilization when using glutaraldehyde on the material properties of porcine meniscus.
    Hunter SA; Noyes FR; Haridas B; Levy MS; Butler DL
    J Biomed Mater Res A; 2003 Dec; 67(4):1245-54. PubMed ID: 14624511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate.
    Chia HN; Hull ML
    J Orthop Res; 2008 Jul; 26(7):951-6. PubMed ID: 18271010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Med Eng Phys; 2011 May; 33(4):438-45. PubMed ID: 21167763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage.
    Kleinhans KL; Jaworski LM; Schneiderbauer MM; Jackson AR
    J Biomech Eng; 2015 Oct; 137(10):101004. PubMed ID: 26201748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of ovine adipose tissue covering the gluteus muscles.
    Gefen A; Haberman E
    J Biomech Eng; 2007 Dec; 129(6):924-30. PubMed ID: 18067398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.