BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23811479)

  • 1. Paper-based chemiresistor for detection of ultralow concentrations of protein.
    Pozuelo M; Blondeau P; Novell M; Andrade FJ; Xavier Rius F; Riu J
    Biosens Bioelectron; 2013 Nov; 49():462-5. PubMed ID: 23811479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-alpha.
    Sánchez-Acevedo ZC; Riu J; Rius FX
    Biosens Bioelectron; 2009 May; 24(9):2842-6. PubMed ID: 19303279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor.
    Cui R; Huang H; Yin Z; Gao D; Zhu JJ
    Biosens Bioelectron; 2008 Jun; 23(11):1666-73. PubMed ID: 18359217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosensors based on carbon nanotube-network field-effect transistors.
    Cid CC; Riu J; Maroto A; Rius FX
    Methods Mol Biol; 2010; 625():213-25. PubMed ID: 20422393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection.
    Wang Y; Wang P; Wang Y; He X; Wang K
    Talanta; 2015 Aug; 141():122-7. PubMed ID: 25966391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay.
    Jie G; Li L; Chen C; Xuan J; Zhu JJ
    Biosens Bioelectron; 2009 Jul; 24(11):3352-8. PubMed ID: 19477112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes.
    Tasca F; Gorton L; Wagner JB; Nöll G
    Biosens Bioelectron; 2008 Oct; 24(2):272-8. PubMed ID: 18479907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers.
    Zelada-Guillén GA; Sebastián-Avila JL; Blondeau P; Riu J; Rius FX
    Biosens Bioelectron; 2012 Jan; 31(1):226-32. PubMed ID: 22154169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors.
    Villamizar RA; Maroto A; Rius FX; Inza I; Figueras MJ
    Biosens Bioelectron; 2008 Oct; 24(2):279-83. PubMed ID: 18495470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate.
    Das BK; Tlili C; Badhulika S; Cella LN; Chen W; Mulchandani A
    Chem Commun (Camb); 2011 Apr; 47(13):3793-5. PubMed ID: 21286623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes.
    Zeng X; Li X; Liu X; Liu Y; Luo S; Kong B; Yang S; Wei W
    Biosens Bioelectron; 2009 Dec; 25(4):896-900. PubMed ID: 19783423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection.
    Shen Y; Tran TT; Modha S; Tsutsui H; Mulchandani A
    Biosens Bioelectron; 2019 Apr; 130():367-373. PubMed ID: 30268670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube films as a platform to transduce molecular recognition events in metalloporphyrins.
    Penza M; Alvisi M; Rossi R; Serra E; Paolesse R; D'Amico A; Di Natale C
    Nanotechnology; 2011 Mar; 22(12):125502. PubMed ID: 21325715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.
    Labroo P; Cui Y
    Anal Chim Acta; 2014 Feb; 813():90-6. PubMed ID: 24528665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes.
    Zhao X; Lu X; Tze WT; Wang P
    Biosens Bioelectron; 2010 Jun; 25(10):2343-50. PubMed ID: 20418089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA.
    Zhu N; Gao H; Xu Q; Lin Y; Su L; Mao L
    Biosens Bioelectron; 2010 Feb; 25(6):1498-503. PubMed ID: 19963366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent research trends of radio-frequency biosensors for biomolecular detection.
    Lee HJ; Yook JG
    Biosens Bioelectron; 2014 Nov; 61():448-59. PubMed ID: 24934746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture.
    Boero C; Carrara S; Del Vecchio G; Calzà L; De Micheli G
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):59-67. PubMed ID: 21518668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-based aptasensors for the rapid and ultrasensitive detection of bacteria.
    Zelada-Guillén GA; Blondeau P; Rius FX; Riu J
    Methods; 2013 Oct; 63(3):233-8. PubMed ID: 23872060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.
    Kim JP; Lee BY; Lee J; Hong S; Sim SJ
    Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.