These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 23811507)
1. Pleiotropic effects of GacA on Pseudomonas fluorescens Pf0-1 in vitro and in soil. Seaton SC; Silby MW; Levy SB Appl Environ Microbiol; 2013 Sep; 79(17):5405-10. PubMed ID: 23811507 [TBL] [Abstract][Full Text] [Related]
2. Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHAO. Bull CT; Duffy B; Voisard C; Défago G; Keel C; Haas D Antonie Van Leeuwenhoek; 2001 Sep; 79(3-4):327-36. PubMed ID: 11816976 [TBL] [Abstract][Full Text] [Related]
3. The GacS-GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. Workentine ML; Chang L; Ceri H; Turner RJ FEMS Microbiol Lett; 2009 Mar; 292(1):50-6. PubMed ID: 19191877 [TBL] [Abstract][Full Text] [Related]
4. The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. Whistler CA; Corbell NA; Sarniguet A; Ream W; Loper JE J Bacteriol; 1998 Dec; 180(24):6635-41. PubMed ID: 9852008 [TBL] [Abstract][Full Text] [Related]
5. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Valverde C; Heeb S; Keel C; Haas D Mol Microbiol; 2003 Nov; 50(4):1361-79. PubMed ID: 14622422 [TBL] [Abstract][Full Text] [Related]
6. The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions. Marshall B; Robleto EA; Wetzler R; Kulle P; Casaz P; Levy SB Appl Environ Microbiol; 2001 Feb; 67(2):852-7. PubMed ID: 11157254 [TBL] [Abstract][Full Text] [Related]
7. Characterization the role of GacA-dependent small RNAs and RsmA family proteins on 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24. Zhang Y; Zhang B; Wu X; Zhang LQ Microbiol Res; 2020 Mar; 233():126391. PubMed ID: 31865097 [TBL] [Abstract][Full Text] [Related]
8. Novel genes involved in Pseudomonas fluorescens Pf0-1 motility and biofilm formation. Mastropaolo MD; Silby MW; Nicoll JS; Levy SB Appl Environ Microbiol; 2012 Jun; 78(12):4318-29. PubMed ID: 22492452 [TBL] [Abstract][Full Text] [Related]
9. Multiple pathways impact the swarming motility of Pastora AB; Rzasa KM; O'Toole GA Microbiol Spectr; 2024 Jun; 12(6):e0016624. PubMed ID: 38687073 [TBL] [Abstract][Full Text] [Related]
10. Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system. Yan Q; Wu XG; Wei HL; Wang HM; Zhang LQ Microbiol Res; 2009; 164(1):18-26. PubMed ID: 18395434 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic variation in the Pseudomonas fluorescens clinical strain MFN1032. Rossignol G; Sperandio D; Guerillon J; Duclairoir Poc C; Soum-Soutera E; Orange N; Feuilloley MG; Merieau A Res Microbiol; 2009 Jun; 160(5):337-44. PubMed ID: 19409488 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Hassan KA; Johnson A; Shaffer BT; Ren Q; Kidarsa TA; Elbourne LD; Hartney S; Duboy R; Goebel NC; Zabriskie TM; Paulsen IT; Loper JE Environ Microbiol; 2010 Apr; 12(4):899-915. PubMed ID: 20089046 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of the regulatory gene algU or gacA can affect the ability of biocontrol Pseudomonas fluorescens CHA0 to persist as culturable cells in nonsterile soil. Mascher F; Moënne-Loccoz Y; Schnider-Keel U; Keel C; Haas D; Défago G Appl Environ Microbiol; 2002 Apr; 68(4):2085-8. PubMed ID: 11916739 [TBL] [Abstract][Full Text] [Related]
14. Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Martínez-Granero F; Rivilla R; Martín M Appl Environ Microbiol; 2006 May; 72(5):3429-34. PubMed ID: 16672487 [TBL] [Abstract][Full Text] [Related]
15. Requirement of polyphosphate by Pseudomonas fluorescens Pf0-1 for competitive fitness and heat tolerance in laboratory media and sterile soil. Silby MW; Nicoll JS; Levy SB Appl Environ Microbiol; 2009 Jun; 75(12):3872-81. PubMed ID: 19395572 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. Garbeva P; Silby MW; Raaijmakers JM; Levy SB; Boer Wd ISME J; 2011 Jun; 5(6):973-85. PubMed ID: 21228890 [TBL] [Abstract][Full Text] [Related]
17. Exploration of Social Spreading Reveals That This Behavior Is Prevalent among McCully LM; Graslie J; McGraw AR; Bitzer AS; Sigurbjörnsdóttir AM; Vilhelmsson O; Silby MW Appl Environ Microbiol; 2021 Sep; 87(19):e0134421. PubMed ID: 34288708 [TBL] [Abstract][Full Text] [Related]
18. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25. Cheng X; van der Voort M; Raaijmakers JM Environ Microbiol Rep; 2015 Feb; 7(1):139-47. PubMed ID: 25356880 [TBL] [Abstract][Full Text] [Related]
19. Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Oku S; Komatsu A; Tajima T; Nakashimada Y; Kato J Microbes Environ; 2012; 27(4):462-9. PubMed ID: 22972385 [TBL] [Abstract][Full Text] [Related]
20. A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. Aarons S; Abbas A; Adams C; Fenton A; O'Gara F J Bacteriol; 2000 Jul; 182(14):3913-9. PubMed ID: 10869066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]