These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23811737)

  • 1. Two-phase strategy of neural control for planar reaching movements: II--relation to spatiotemporal characteristics of movement trajectory.
    Rand MK; Shimansky YP
    Exp Brain Res; 2013 Sep; 230(1):1-13. PubMed ID: 23811737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-phase strategy of neural control for planar reaching movements: I. XY coordination variability and its relation to end-point variability.
    Rand MK; Shimansky YP
    Exp Brain Res; 2013 Mar; 225(1):55-73. PubMed ID: 23196802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2010 Nov; 207(1-2):49-63. PubMed ID: 20931181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements.
    Rand MK; Squire LM; Stelmach GE
    Exp Brain Res; 2006 Sep; 174(1):74-85. PubMed ID: 16565810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D human arm reaching movement planning with principal patterns in successive phases.
    Dehghani S; Bahrami F
    J Comput Neurosci; 2020 Aug; 48(3):265-280. PubMed ID: 32458184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-phase strategy of controlling motor coordination determined by task performance optimality.
    Shimansky YP; Rand MK
    Biol Cybern; 2013 Feb; 107(1):107-29. PubMed ID: 23203419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual, motor and attentional influences on proprioceptive contributions to perception of hand path rectilinearity during reaching.
    Scheidt RA; Lillis KP; Emerson SJ
    Exp Brain Res; 2010 Jul; 204(2):239-54. PubMed ID: 20532489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of motor planning on use of motor abundance.
    de Freitas SM; Scholz JP; Stehman AJ
    Neurosci Lett; 2007 Apr; 417(1):66-71. PubMed ID: 17331643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimality of Upper-Arm Reaching Trajectories Based on the Expected Value of the Metabolic Energy Cost.
    Taniai Y; Nishii J
    Neural Comput; 2015 Aug; 27(8):1721-37. PubMed ID: 26079750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gap effect for eye and hand movements in double-step pointing.
    Boulinguez P; Blouin J; Nougier V
    Exp Brain Res; 2001 Jun; 138(3):352-8. PubMed ID: 11460773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error generalization as a function of velocity and duration: human reaching movements.
    Francis JT
    Exp Brain Res; 2008 Mar; 186(1):23-37. PubMed ID: 18030456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postural invariance in three-dimensional reaching and grasping movements.
    Gréa H; Desmurget M; Prablanc C
    Exp Brain Res; 2000 Sep; 134(2):155-62. PubMed ID: 11037282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand trajectory invariance in reaching movements involving the trunk.
    Adamovich SV; Archambault PS; Ghafouri M; Levin MF; Poizner H; Feldman AG
    Exp Brain Res; 2001 Jun; 138(3):288-303. PubMed ID: 11460767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reach-to-grasp movement as a minimization process.
    Yang F; Feldman AG
    Exp Brain Res; 2010 Feb; 201(1):75-92. PubMed ID: 19771417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.