These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23811880)

  • 1. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser.
    Zhang F; Yu Y; Cheng C; Dai Y; Qiu J
    Opt Lett; 2013 Jul; 38(13):2212-4. PubMed ID: 23811880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica.
    Dai Y; Wu G; Lin X; Ma G; Qiu J
    Opt Express; 2012 Jul; 20(16):18072-8. PubMed ID: 23038354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2011 Sep; 19(19):18294-301. PubMed ID: 21935196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2012 Oct; 20(22):24103-14. PubMed ID: 23187173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2011 Jun; 19(13):11992-9. PubMed ID: 21716433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing.
    Yang W; Bricchi E; Kazansky PG; Bovatsek J; Arai AY
    Opt Express; 2006 Oct; 14(21):10117-24. PubMed ID: 19529407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sodium oxide content on the formation of nanogratings in germanate glass by a femtosecond laser.
    Wang J; Liu X; Dai Y; Wang Z; Qiu J
    Opt Express; 2018 May; 26(10):12761-12768. PubMed ID: 29801311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale investigations of femtosecond laser induced nanogratings in optical glasses.
    Xie Q; Shchedrina N; Cavillon M; Poumellec B; Lancry M
    Nanoscale Adv; 2024 Jan; 6(2):489-498. PubMed ID: 38235095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass.
    Taylor RS; Hnatovsky C; Simova E; Rajeev PP; Rayner DM; Corkum PB
    Opt Lett; 2007 Oct; 32(19):2888-90. PubMed ID: 17909607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source.
    Qi J; Wang Z; Xu J; Lin Z; Li X; Chu W; Cheng Y
    Opt Express; 2018 Nov; 26(23):29669-29678. PubMed ID: 30469928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled three-dimensional periodic micro-nano structures in bulk quartz crystal induced by femtosecond laser pulses.
    Zhang F; Nie Z; Huang H; Ma L; Tang H; Hao M; Qiu J
    Opt Express; 2019 Mar; 27(5):6442-6450. PubMed ID: 30876229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser nanostructuring on a 4H-SiC surface by tailoring the induced self-assembled nanogratings.
    Xie X; Lei L; Zhao X; Ma L; Tang G; Qiu J; Zhang F; Nie Z
    Opt Express; 2022 Jan; 30(3):3379-3387. PubMed ID: 35209597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber nanogratings induced by femtosecond pulse laser direct writing for in-line polarizer.
    Lu J; Dai Y; Li Q; Zhang Y; Wang C; Pang F; Wang T; Zeng X
    Nanoscale; 2019 Jan; 11(3):908-914. PubMed ID: 30303504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-Dependent Scattering of Nanogratings in Femtosecond Laser Photowritten Waveguides in Fused Silica.
    Cheng G; Lin L; Mishchik K; Stoian R
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison between Nanogratings-Based and Stress-Engineered Waveplates Written by Femtosecond Laser in Silica.
    Tian J; Yao H; Cavillon M; Garcia-Caurel E; Ossikovski R; Stchakovsky M; Eypert C; Poumellec B; Lancry M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31991590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Glass Free Volume on Femtosecond Laser-Written Nanograting Formation in Silica Glass.
    Shchedrina N; Cavillon M; Ari J; Ollier N; Lancry M
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses.
    Wang X; Guo H; Yang H; Jiang H; Gong Q
    Appl Opt; 2004 Aug; 43(23):4571-4. PubMed ID: 15376434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass.
    Beresna M; Kazansky PG
    Opt Lett; 2010 May; 35(10):1662-4. PubMed ID: 20479842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure.
    Little DJ; Ams M; Dekker P; Marshall GD; Dawes JM; Withford MJ
    Opt Express; 2008 Nov; 16(24):20029-37. PubMed ID: 19030088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.