These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Février S; Beaudou B; Viale P Opt Express; 2010 Mar; 18(5):5142-50. PubMed ID: 20389527 [TBL] [Abstract][Full Text] [Related]
7. Single-mode hollow-core photonic crystal fiber made from soft glass. Jiang X; Euser TG; Abdolvand A; Babic F; Tani F; Joly NY; Travers JC; Russell PS Opt Express; 2011 Aug; 19(16):15438-44. PubMed ID: 21934907 [TBL] [Abstract][Full Text] [Related]
8. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss. Debord B; Alharbi M; Bradley T; Fourcade-Dutin C; Wang YY; Vincetti L; Gérôme F; Benabid F Opt Express; 2013 Nov; 21(23):28597-608. PubMed ID: 24514371 [TBL] [Abstract][Full Text] [Related]
10. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm. Lyngsø JK; Mangan BJ; Jakobsen C; Roberts PJ Opt Express; 2009 Dec; 17(26):23468-73. PubMed ID: 20052054 [TBL] [Abstract][Full Text] [Related]
11. Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers. Aghaie KZ; Digonnet MJ; Fan S Opt Lett; 2010 Jun; 35(12):1938-40. PubMed ID: 20548345 [TBL] [Abstract][Full Text] [Related]
12. Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss. Alharbi M; Bradley T; Debord B; Fourcade-Dutin C; Ghosh D; Vincetti L; Gérôme F; Benabid F Opt Express; 2013 Nov; 21(23):28609-16. PubMed ID: 24514372 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers. Yang F; Jin W; Ho HL; Wang F; Liu W; Ma L; Hu Y Opt Express; 2013 Jul; 21(13):15514-21. PubMed ID: 23842338 [TBL] [Abstract][Full Text] [Related]
16. Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Wan B; Zhu L; Ma X; Li T; Zhang J Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406650 [TBL] [Abstract][Full Text] [Related]
17. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design. Yan M; Shum P Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219 [TBL] [Abstract][Full Text] [Related]
18. Orders of magnitude loss reduction in photonic bandgap fibers by engineering the core surround. Upendar S; Ando RF; Schmidt MA; Weiss T Opt Express; 2021 Mar; 29(6):8606-8616. PubMed ID: 33820304 [TBL] [Abstract][Full Text] [Related]
19. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber. Wheeler NV; Heidt AM; Baddela NK; Fokoua EN; Hayes JR; Sandoghchi SR; Poletti F; Petrovich MN; Richardson DJ Opt Lett; 2014 Jan; 39(2):295-8. PubMed ID: 24562130 [TBL] [Abstract][Full Text] [Related]
20. Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber. You Y; Guo H; Hao Y; Wang Z; Liu YG Opt Express; 2021 Jul; 29(15):24226-24236. PubMed ID: 34614672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]