These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23811918)

  • 1. Effects of trigger laser pulse width on the jitter time of GaAs photoconductive semiconductor switch.
    Shi W; Gui H; Zhang L; Ma C; Li M; Xu M; Wang L
    Opt Lett; 2013 Jul; 38(13):2330-2. PubMed ID: 23811918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the incident laser pulse energy on jitter time of GaAs photoconductive semiconductor switches.
    Shi W; Gui HM; Zhang L; Li MX; Ma C; Wang LY; Jiang H
    Opt Lett; 2013 Nov; 38(21):4339-41. PubMed ID: 24177088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruby fluorescence-enabled ultralong lock-on time high-gain gallium arsenic photoconductive semiconductor switch.
    Chao JH; Zhu W; Chen CJ; Lee YG; Shang A; Yin S; Hoffman RC
    Opt Lett; 2018 Aug; 43(16):3929-3932. PubMed ID: 30106919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of an ultra-short electrical pulse with width shorter than the excitation laser.
    Shi W; Wang S; Ma C; Xu M
    Sci Rep; 2016 Jun; 6():27577. PubMed ID: 27273512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching jitter of avalanche gallium arsenide photoconductive semiconductor switch influenced by multiple avalanche domains.
    Chen H; Wei J; Sun Q; Wang L; Li S
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38270919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 80 kV gas switch triggered by a 17 μJ fiber-optic laser.
    Wang Z; Sun F; Qiu A; Hu L; Yin J; Cong P; Jiang X; Wei H; Jiang H
    Rev Sci Instrum; 2020 May; 91(5):056104. PubMed ID: 32486737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of two GaAs photoconductive semiconductor switches triggered by two laser diodes.
    Xu M; Bian K; Ma C; Jia H; An X; Shi W
    Opt Lett; 2016 Sep; 41(18):4387-9. PubMed ID: 27628404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed characterization of a UV LED for pulsed power applications on a silicon carbide photoconductive semiconductor switch.
    Wilson N; Mauch D; Meyers V; Feathers S; Dickens J; Neuber A
    Rev Sci Instrum; 2017 Aug; 88(8):085109. PubMed ID: 28863629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All solid-state high power microwave source with high repetition frequency.
    Bragg JW; Sullivan WW; Mauch D; Neuber AA; Dickens JC
    Rev Sci Instrum; 2013 May; 84(5):054703. PubMed ID: 23742571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing-jitter, optical, and mode-beating linewidths analysis on subpicosecond optical pulses generated by a quantum-dash passively mode-locked semiconductor laser.
    Maldonado-Basilio R; Parra-Cetina J; Latkowski S; Landais P
    Opt Lett; 2010 Apr; 35(8):1184-6. PubMed ID: 20410960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.
    Reid M; Fedosejevs R
    Appl Opt; 2005 Jan; 44(1):149-53. PubMed ID: 15662896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.
    Mao J; Wang X; Tang D; Lv H; Li C; Shao Y; Qin L
    Rev Sci Instrum; 2012 Jul; 83(7):075112. PubMed ID: 22852729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reliability Study of Grating Coupled Semiconductor Laser Based on Raman Spectra Technique].
    Jia P; Qin L; Zhang X; Zhang J; Liu TY; Men ZW; Ning YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1745-8. PubMed ID: 30052384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator.
    Shen Y; Wang W; Liu Y; Xia L; Zhang H; Pan H; Zhu J; Shi J; Zhang L; Deng J
    Rev Sci Instrum; 2015 May; 86(5):055110. PubMed ID: 26026561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of 1-ps infrared pulses at 10.6 microm by use of low-temperature-grown GaAs as an optical semiconductor switch.
    Elezzabi AY; Meyer J; Hughes MK; Johnson SR
    Opt Lett; 1994 Jun; 19(12):898-900. PubMed ID: 19844481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal upconversion nanocrystals enable low-temperature-grown GaAs photoconductive switch operating at
    Xiang H; Chaudhary M; Tripon-Canseliet C; Chen Z
    Nanotechnology; 2021 Aug; 32(45):. PubMed ID: 34330125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructure enabled lower on-state resistance and longer lock-on time GaAs photoconductive semiconductor switches.
    Liu R; Shang A; Chen CJ; Lee YG; Yin S
    Opt Lett; 2021 Feb; 46(4):825-828. PubMed ID: 33577536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passively Q-switched Yb3+:NaY(WO4)2 laser with GaAs saturable absorber.
    Lan R; Pan L; Utkin I; Ren Q; Zhang H; Wang Z; Fedosejevs R
    Opt Express; 2010 Mar; 18(5):4000-5. PubMed ID: 20389414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetization and microstructure dynamics in Fe/MnAs/GaAs(001): Fe magnetization reversal by a femtosecond laser pulse.
    Spezzani C; Ferrari E; Allaria E; Vidal F; Ciavardini A; Delaunay R; Capotondi F; Pedersoli E; Coreno M; Svetina C; Raimondi L; Zangrando M; Ivanov R; Nikolov I; Demidovich A; Danailov MB; Popescu H; Eddrief M; De Ninno G; Kiskinova M; Sacchi M
    Phys Rev Lett; 2014 Dec; 113(24):247202. PubMed ID: 25541801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-Based Artificial Neural Network Assisting in Extracting Transient Properties of Extrinsically Triggering Photoconductive Semiconductor Switches.
    Zheng Z; Hu H; Wang Y; Zhao T; Sun Q; Guo H
    Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.