These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 23812279)

  • 1. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants.
    Ammann EM; Gasser CA; Hommes G; Corvini PF
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1397-406. PubMed ID: 23812279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption-assisted surface conjugation: a way to stabilize laccase enzyme.
    Zimmermann YS; Shahgaldian P; Corvini PF; Hommes G
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):169-78. PubMed ID: 21847511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater.
    Arca-Ramos A; Ammann EM; Gasser CA; Nastold P; Eibes G; Feijoo G; Lema JM; Moreira MT; Corvini PF
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3217-28. PubMed ID: 26490891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants.
    Songulashvili G; Jimenéz-Tobón GA; Jaspers C; Penninckx MJ
    Fungal Biol; 2012 Aug; 116(8):883-9. PubMed ID: 22862916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of superparamagnetic nanobiocatalysts for green chemistry applications.
    Gasser CA; Ammann EM; Schäffer A; Shahgaldian P; Corvini PF
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7281-96. PubMed ID: 27106914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation.
    Pang R; Li M; Zhang C
    Talanta; 2015 Jan; 131():38-45. PubMed ID: 25281070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds.
    Mohammadi M; As'habi MA; Salehi P; Yousefi M; Nazari M; Brask J
    Int J Biol Macromol; 2018 Apr; 109():443-447. PubMed ID: 29274421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment.
    Ba S; Arsenault A; Hassani T; Jones JP; Cabana H
    Crit Rev Biotechnol; 2013 Dec; 33(4):404-18. PubMed ID: 23051065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale.
    Gasser CA; Yu L; Svojitka J; Wintgens T; Ammann EM; Shahgaldian P; Corvini PF; Hommes G
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3305-16. PubMed ID: 24305739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of a robust nanobiocatalyst for municipal wastewater treatment.
    Hommes G; Gasser CA; Howald CB; Goers R; Schlosser D; Shahgaldian P; Corvini PF
    Bioresour Technol; 2012 Jul; 115():8-15. PubMed ID: 22197331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds.
    Galliker P; Hommes G; Schlosser D; Corvini PF; Shahgaldian P
    J Colloid Interface Sci; 2010 Sep; 349(1):98-105. PubMed ID: 20621807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds.
    Liu Y; Zeng Z; Zeng G; Tang L; Pang Y; Li Z; Liu C; Lei X; Wu M; Ren P; Liu Z; Chen M; Xie G
    Bioresour Technol; 2012 Jul; 115():21-6. PubMed ID: 22137272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.
    Wang F; Guo C; Yang LR; Liu CZ
    Bioresour Technol; 2010 Dec; 101(23):8931-5. PubMed ID: 20655206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramic honeycomb as support for covalent immobilization of laccase from Trametes versicolor and transformation of nuclear fast red.
    Plagemann R; Jonas L; Kragl U
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):313-20. PubMed ID: 21181152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers.
    Asgher M; Noreen S; Bilal M
    Int J Biol Macromol; 2017 Feb; 95():54-62. PubMed ID: 27825994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of PAMAM dendrimers as a platform for laccase immobilization: kinetic characterization of the enzyme.
    Cardoso FP; Aquino Neto S; Ciancaglini P; de Andrade AR
    Appl Biochem Biotechnol; 2012 Aug; 167(7):1854-64. PubMed ID: 22639364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very stable silica-gel-bound laccase biocatalysts for the selective oxidation in continuous systems.
    Rekuć A; Bryjak J; Szymańska K; Jarzebski AB
    Bioresour Technol; 2010 Apr; 101(7):2076-83. PubMed ID: 20031396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase.
    Galli C; Madzak C; Vadalà R; Jolivalt C; Gentili P
    Chembiochem; 2013 Dec; 14(18):2500-5. PubMed ID: 24151197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity and enzyme recycling using chitosan immobilized laccase.
    Skoronski E; Fernandes M; Magalhães Mde L; da Silva GF; João JJ; Soares CH; Júnior AF
    Molecules; 2014 Oct; 19(10):16794-809. PubMed ID: 25329872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design-of-experiment strategy for the formulation of laccase biocatalysts and their application to degrade bisphenol A.
    Demarche P; Junghanns C; Mazy N; Agathos SN
    N Biotechnol; 2012 Nov; 30(1):96-103. PubMed ID: 22677085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.