BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23813005)

  • 1. FuncISH: learning a functional representation of neural ISH images.
    Liscovitch N; Shalit U; Chechik G
    Bioinformatics; 2013 Jul; 29(13):i36-43. PubMed ID: 23813005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GINI: from ISH images to gene interaction networks.
    Puniyani K; Xing EP
    PLoS Comput Biol; 2013; 9(10):e1003227. PubMed ID: 24130465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.
    Zeng T; Li R; Mukkamala R; Ye J; Ji S
    BMC Bioinformatics; 2015 May; 16():147. PubMed ID: 25948335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPEX2: automated concise extraction of spatial gene expression patterns from Fly embryo ISH images.
    Puniyani K; Faloutsos C; Xing EP
    Bioinformatics; 2010 Jun; 26(12):i47-56. PubMed ID: 20529936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering.
    Jagalur M; Pal C; Learned-Miller E; Zoeller RT; Kulp D
    BMC Bioinformatics; 2007; 8 Suppl 10(Suppl 10):S5. PubMed ID: 18269699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated identification of cell-type-specific genes in the mouse brain by image computing of expression patterns.
    Li R; Zhang W; Ji S
    BMC Bioinformatics; 2014 Jun; 15():209. PubMed ID: 24947138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of deep convolutional neural networks for in situ hybridization gene expression image representation.
    Abed-Esfahani P; Darwin BC; Howard D; Wang N; Kim E; Lerch J; French L
    PLoS One; 2022; 17(1):e0262717. PubMed ID: 35073334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas.
    Liu Z; Yan SF; Walker JR; Zwingman TA; Jiang T; Li J; Zhou Y
    BMC Syst Biol; 2007 Apr; 1():19. PubMed ID: 17437647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.
    Ramsden HL; Sürmeli G; McDonagh SG; Nolan MF
    PLoS Comput Biol; 2015 Jan; 11(1):e1004032. PubMed ID: 25615592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images.
    Cohen I; David EO; Netanyahu NS
    Entropy (Basel); 2019 Feb; 21(3):. PubMed ID: 33266936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic image analysis for gene expression patterns of fly embryos.
    Peng H; Long F; Zhou J; Leung G; Eisen MB; Myers EW
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S7. PubMed ID: 17634097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatically identifying and annotating mouse embryo gene expression patterns.
    Han L; van Hemert JI; Baldock RA
    Bioinformatics; 2011 Apr; 27(8):1101-7. PubMed ID: 21357576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
    Crombach A; Cicin-Sain D; Wotton KR; Jaeger J
    PLoS One; 2012; 7(9):e46658. PubMed ID: 23029561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The in situ hybridization and immunocytochemistry techniques for characterization of cells expressing specific mRNAs in paraffin-embedded brains.
    Cloëz-Tayarani I; Fillion G
    Brain Res Brain Res Protoc; 1997 May; 1(2):195-202. PubMed ID: 9385084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical evaluation of methods for quantifying gene expression by autoradiography in histological sections.
    Lazic SE
    BMC Neurosci; 2009 Jan; 10():5. PubMed ID: 19146702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images.
    Patrushev I; James-Zorn C; Ciau-Uitz A; Patient R; Gilchrist MJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006077. PubMed ID: 30157169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain.
    Lau C; Ng L; Thompson C; Pathak S; Kuan L; Jones A; Hawrylycz M
    BMC Bioinformatics; 2008 Mar; 9():153. PubMed ID: 18366675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic annotation of spatial expression patterns via sparse Bayesian factor models.
    Pruteanu-Malinici I; Mace DL; Ohler U
    PLoS Comput Biol; 2011 Jul; 7(7):e1002098. PubMed ID: 21814502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DANCER: a program for digital anatomical reconstruction of gene expression data.
    Kankainen M; Wong G
    Nucleic Acids Res; 2003 Nov; 31(21):e132. PubMed ID: 14576332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for automated detection of gene expression required for the establishment of a digital transcriptome-wide gene expression atlas.
    Carson JP; Eichele G; Chiu W
    J Microsc; 2005 Mar; 217(Pt 3):275-81. PubMed ID: 15725131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.