These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 23813415)
1. Labeling of cancer cells with magnetic nanoparticles for magnetic resonance imaging. Weis C; Blank F; West A; Black G; Woodward RC; Carroll MR; Mainka A; Kartmann R; Brandl A; Bruns H; Hallam E; Shaw J; Murphy J; Teoh WY; Aifantis KE; Amal R; House M; Pierre TS; Fabry B Magn Reson Med; 2014 May; 71(5):1896-905. PubMed ID: 23813415 [TBL] [Abstract][Full Text] [Related]
3. Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Liao Z; Wang H; Lv R; Zhao P; Sun X; Wang S; Su W; Niu R; Chang J Langmuir; 2011 Mar; 27(6):3100-5. PubMed ID: 21341768 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585 [TBL] [Abstract][Full Text] [Related]
5. Surface charge switching nanoparticles for magnetic resonance imaging. Lee DJ; Oh YT; Lee ES Int J Pharm; 2014 Aug; 471(1-2):127-34. PubMed ID: 24858382 [TBL] [Abstract][Full Text] [Related]
6. Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line. Mamani JB; Pavon LF; Miyaki LA; Sibov TT; Rossan F; Silveira PH; Cárdenas WH; Amaro Junior E; Gamarra LF Einstein (Sao Paulo); 2012; 10(2):216-21. PubMed ID: 23052458 [TBL] [Abstract][Full Text] [Related]
7. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. Di Corato R; Gazeau F; Le Visage C; Fayol D; Levitz P; Lux F; Letourneur D; Luciani N; Tillement O; Wilhelm C ACS Nano; 2013 Sep; 7(9):7500-12. PubMed ID: 23924160 [TBL] [Abstract][Full Text] [Related]
8. Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging. Eibofner F; Steidle G; Kehlbach R; Bantleon R; Schick F Magn Reson Med; 2010 Oct; 64(4):1027-38. PubMed ID: 20564596 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared fluorescence labeling of iron nanoparticles and applications for cell labeling and in vivo imaging. Wang J; Liu Y; Hou Y; Chen Z; Gu N Methods Mol Biol; 2012; 906():221-37. PubMed ID: 22791436 [TBL] [Abstract][Full Text] [Related]
11. In vivo monitoring of rat macrophages labeled with poly(l-lysine)-iron oxide nanoparticles. Babič M; Schmiedtová M; Poledne R; Herynek V; Horák D J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1141-8. PubMed ID: 25283523 [TBL] [Abstract][Full Text] [Related]
12. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle. Li J; Wang S; Wu C; Dai Y; Hou P; Han C; Xu K Biosens Bioelectron; 2016 Dec; 86():1047-1053. PubMed ID: 27501342 [TBL] [Abstract][Full Text] [Related]
13. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Masoudi A; Madaah Hosseini HR; Shokrgozar MA; Ahmadi R; Oghabian MA Int J Pharm; 2012 Aug; 433(1-2):129-41. PubMed ID: 22579990 [TBL] [Abstract][Full Text] [Related]
14. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. Danhier P; Magat J; Levêque P; De Preter G; Porporato PE; Bouzin C; Jordan BF; Demeur G; Haufroid V; Feron O; Sonveaux P; Gallez B NMR Biomed; 2015 Mar; 28(3):367-75. PubMed ID: 25611487 [TBL] [Abstract][Full Text] [Related]
15. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Ma X; Gong A; Chen B; Zheng J; Chen T; Shen Z; Wu A Colloids Surf B Biointerfaces; 2015 Feb; 126():44-9. PubMed ID: 25543982 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance imaging of pathogenic protozoan parasite Entamoeba histolytica labeled with superparamagnetic iron oxide nanoparticles. Ernst TM; Fehling H; Bernin H; Zaruba MD; Bruchhaus I; Adam G; Ittrich H; Lotter H Invest Radiol; 2015 Oct; 50(10):709-18. PubMed ID: 26135016 [TBL] [Abstract][Full Text] [Related]
17. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Huang G; Li H; Chen J; Zhao Z; Yang L; Chi X; Chen Z; Wang X; Gao J Nanoscale; 2014 Sep; 6(17):10404-12. PubMed ID: 25079966 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of micron-sized superparamagnetic iron oxide particles as markers for detection of migration of bone marrow-derived mesenchymal stromal cells in a stroke model. Tarulli E; Chaudhuri JD; Gretka V; Hoyles A; Morshead CM; Stanisz GJ J Magn Reson Imaging; 2013 Jun; 37(6):1409-18. PubMed ID: 23712844 [TBL] [Abstract][Full Text] [Related]
19. Potential stem cell labeling ability of poly-L-lysine complexed to ultrasmall iron oxide contrast agent: An optimization and relaxometry study. Mishra SK; Khushu S; Gangenahalli G Exp Cell Res; 2015 Dec; 339(2):427-36. PubMed ID: 26589263 [TBL] [Abstract][Full Text] [Related]
20. Efficient in vitro labeling of human prostate cancer cells with superparamagnetic iron oxide nanoparticles. Jiang J; Chen Y; Zhu Y; Yao X; Qi J Cancer Biother Radiopharm; 2011 Aug; 26(4):461-7. PubMed ID: 21812654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]