BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23813564)

  • 21. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland.
    Boras-Granic K; Chang H; Grosschedl R; Hamel PA
    Dev Biol; 2006 Jul; 295(1):219-31. PubMed ID: 16678815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phases of canonical Wnt signaling during the development of mouse intestinal epithelium.
    Kim BM; Mao J; Taketo MM; Shivdasani RA
    Gastroenterology; 2007 Aug; 133(2):529-38. PubMed ID: 17681174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles for Nkx3.1 in prostate development and cancer.
    Bhatia-Gaur R; Donjacour AA; Sciavolino PJ; Kim M; Desai N; Young P; Norton CR; Gridley T; Cardiff RD; Cunha GR; Abate-Shen C; Shen MM
    Genes Dev; 1999 Apr; 13(8):966-77. PubMed ID: 10215624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis.
    Shen MM; Abate-Shen C
    Dev Dyn; 2003 Dec; 228(4):767-78. PubMed ID: 14648854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wnt signaling though beta-catenin is required for prostate lineage specification.
    Simons BW; Hurley PJ; Huang Z; Ross AE; Miller R; Marchionni L; Berman DM; Schaeffer EM
    Dev Biol; 2012 Nov; 371(2):246-55. PubMed ID: 22960283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.
    Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM
    PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. β-catenin/Tcf-signaling appears to establish the murine ovarian surface epithelium (OSE) and remains active in selected postnatal OSE cells.
    Usongo M; Farookhi R
    BMC Dev Biol; 2012 Jun; 12():17. PubMed ID: 22682531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulation of the
    Xie Q; Wang ZA
    J Biol Chem; 2017 Aug; 292(33):13521-13530. PubMed ID: 28679531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Essential roles of epithelial bone morphogenetic protein signaling during prostatic development.
    Omori A; Miyagawa S; Ogino Y; Harada M; Ishii K; Sugimura Y; Ogino H; Nakagata N; Yamada G
    Endocrinology; 2014 Jul; 155(7):2534-44. PubMed ID: 24731097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of Caudal Müllerian Duct Mesenchyme to Prostate Development.
    Brechka H; McAuley EM; Lamperis SM; Paner GP; Vander Griend DJ
    Stem Cells Dev; 2016 Nov; 25(22):1733-1741. PubMed ID: 27595922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. β-Catenin-SOX2 signaling regulates the fate of developing airway epithelium.
    Hashimoto S; Chen H; Que J; Brockway BL; Drake JA; Snyder JC; Randell SH; Stripp BR
    J Cell Sci; 2012 Feb; 125(Pt 4):932-42. PubMed ID: 22421361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate.
    Lamm ML; Podlasek CA; Barnett DH; Lee J; Clemens JQ; Hebner CM; Bushman W
    Dev Biol; 2001 Apr; 232(2):301-14. PubMed ID: 11401393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development.
    Cunha GR; Ricke W; Thomson A; Marker PC; Risbridger G; Hayward SW; Wang YZ; Donjacour AA; Kurita T
    J Steroid Biochem Mol Biol; 2004 Nov; 92(4):221-36. PubMed ID: 15663986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mouse Fem1b interacts with the Nkx3.1 homeoprotein and is required for proper male secondary sexual development.
    Wang X; Desai N; Hu YP; Price SM; Abate-Shen C; Shen MM
    Dev Dyn; 2008 Oct; 237(10):2963-72. PubMed ID: 18816836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals.
    Patel N; Sharpe PT; Miletich I
    Dev Biol; 2011 Oct; 358(1):156-67. PubMed ID: 21806977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation.
    Woo J; Miletich I; Kim BM; Sharpe PT; Shivdasani RA
    PLoS One; 2011; 6(7):e22493. PubMed ID: 21799872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro induction of prostate buds from murine urogenital epithelium in the absence of mesenchymal cells.
    Uno W; Ofuji K; Wymeersch FJ; Takasato M
    Dev Biol; 2023 Jun; 498():49-60. PubMed ID: 36963625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism.
    Wu X; Xu K; Zhang L; Deng Y; Lee P; Shapiro E; Monaco M; Makarenkova HP; Li J; Lepor H; Grishina I
    Dev Biol; 2011 Aug; 356(2):337-49. PubMed ID: 21624358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling.
    Kim BM; Buchner G; Miletich I; Sharpe PT; Shivdasani RA
    Dev Cell; 2005 Apr; 8(4):611-22. PubMed ID: 15809042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish.
    Shimizu N; Kawakami K; Ishitani T
    Dev Biol; 2012 Oct; 370(1):71-85. PubMed ID: 22842099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.